【题目】如图,已知AD⊥DF,EC⊥DF,∠1=∠3,∠2=∠4,求证:AE∥DF.(请在下面的解答过程的空格内填空或在括号内填写理由)
证明:∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°.( )
∴EC∥( )
∴∠EBA=_____(两直线平行,内错角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代换)
∴AB∥_____.( )
∴∠2+∠ADC=180°.( )
∴∠2+∠ADF+∠3=180°.
∵∠1=∠3.(已知)
∴∠2+∠ADF+∠1=180°.(等量代换)
∴_____+∠ADF=180°.
∴AE∥DF.( )
【答案】见解析.
【解析】
利用内错角相等两直线平行,得到EC∥AD,再有两直线平行,内错角相等,得出∠EBA=∠2,等量代换得到∠EBA=∠4,利用同位角相等两直线平行,得到AB∥CD,再有两直线平行,同旁内角互补得到∠2+∠ADC=180°,等量代换得到∠EAD+∠ADF=180°,再根据同旁内角互补,两直线平行得到AE∥DF.
证明::∵AD⊥DF,EC⊥DF,(已知)
∴∠BFD=∠ADF=90°(垂直的定义),
∴EC∥AD(内错角相等,两直线平行),
∴∠EBA=∠2(两直线平行,内错角相等)
∵∠2=∠4,(已知)
∴∠EBA=∠4.(等量代换)
∴AB∥DC(同位角相等,两直线平行),
∴∠2+∠ADC=180°(两直线平行,同旁内角互补),
∴∠2+∠ADF+∠3=180°,
∵∠1=∠3(已知),
∴∠2+∠ADF+∠1=180°(等量代换),
∴∠EAD+∠ADF=180°,
∴AE∥DF(同旁内角互补,两直线平行),
故答案为:垂直的定义,AD,∠2,CD,同位角相等,两直线平行,两直线平行,同旁内角互补,∠EAD,同旁内角互补,两直线平行.
科目:初中数学 来源: 题型:
【题目】在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在△ABC的外部,点D边BC上,DE交AC于点F,若∠1=∠2,AE=AC,BC=DE.
(1)求证:AB=AD;
(2)若∠1=60°,判断△ABD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O出发,按图中箭头所示的方向运动,第1次从原点运动到点(1,),第2次接着运动到点(2,0),第3次接着运动到点(2,﹣2),第4次接着运动到点(4,﹣2),第5次接着运动到点(4,0),第6次接着运动到点(5,)…按这样的运动规律,经过2019次运动后,电子蚂蚁运动到的位置的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=a﹣2b﹣1.求:
(1)A、C两站之间的距离AC;
(2)若A、C两站之间的距离AC=180km,求C、D两站之间的距离CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )
A. 25 B. 33 C. 34 D. 50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2= 米/分;
(2)写出d1与t的函数关系式:
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.
(1)求B点到直线CA的距离;
(2)执法船从A到D航行了多少海里?(≈1.414,≈1.732,结果精确到0.1海里)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com