【题目】如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD= .
【答案】3.
【解析】
试题分析:过点P作PE⊥OA于E,根据角平分线定义可得∠AOP=∠BOP=15°,再由两直线平行,内错角相等可得∠BOP=∠OPC=15°,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答.
解:如图,过点P作PE⊥OA于E,
∵∠AOB=30°,OP平分∠AOB,
∴∠AOP=∠BOP=15°.
∵PC∥OB,
∴∠BOP=∠OPC=15°,
∴∠PCE=∠AOP+∠OPC=15°+15°=30°,
又∵PC=6,
∴PE=PC=3,
∵∠AOP=∠BOP,PD⊥OB于D,PE⊥OA于E,
∴PD=PE=3,
故答案为3.
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E,试说明AB∥DC,把下面的说理过程补充完整.
证明:∵AD∥BC(已知)
∴∠2=∠E(___________________________)
∵AE平分∠BAD(已知)
∴∠1=∠2 (_________________________)
∴∠1=∠E(___________________________)
∵∠CFE=∠E(已知)
∴∠1=∠______(______________________)
∴AB∥CD(_________________________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.
问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.
请根据上述信息解答下列问题:
(1)该班参与问卷调查的人数有 人;补全条形统计图;
(2)求出C类人数占总调查人数的百分比及扇形统计图中类所对应扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
序号 项目 | 1 | 2 | 3 | 4 | 5 | 6 |
笔试成绩/分 | 85 | 92 | 84 | 90 | 84 | 80 |
面试成绩/分 | 90 | 88 | 86 | 90 | 80 | 85 |
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,小明家小区空地上有两棵笔直的树、.一天,他在处测得树顶的仰角,在处测得树顶的仰角,线段恰好经过树顶.已知. 、两处的距离为米,两棵树之间的距离米, 、、、四点在一条直线上,求树的高度.(, ,结果精确到)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com