精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明由.
分析:(1)根据|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,设|OB|=|OC|=5|OA|=5m,可得(m+5m)×5m=15,求出m的值,从而得到A、B、C三点的坐标,利用待定系数法求出函数解析式;
(2)利用待定系数法求出一次函数解析式,根据二次函数解析式设出函数图象上点的坐标,利用点到直线的距离公式列出关于n的方程,解答即可.
解答:解:(1)∵|OA|:|OB|=1:5,|OB|=|OC|,
∴设|OB|=|OC|=5|OA|=5m,
∵S△ABC=15,
1
2
(m+5m)×5m=15,
∴m=1,
∴|OB|=|OC|=5,
|OA|=1,
∵抛物线y=ax2+bx+c(a≠0)经过A、B、C三点A(-1,0)B(5,0)C(0,-5),
设二次函数解析式为y=ax2+bx+c,
把A(-1,0)B(5,0)C(0,-5)分别代入解析式得,
a-b+c=0
25a+5b+c=0
c=-5

解得
a=1
b=-4
c=-5

∴a=1,b=-4,c=-5,
∴y=x2-4x-5.

(2)设直线BC的解析式为y=kx+b,把(5,0),(0,-5)分别代入解析式得:
5k+b=0
b=-5

解得
k=1
b=-5

则一次函数解析式为y=x-5 即x-y-5=0,
设M的坐标为(n,n2-4n-5),
代入点到直线的距离公式得:\frac|n+(-1)(n2-4n-5)+(-5)|=7
2

整理得:①n2-5n+14=0,
∵△=25-56=-31<0,
∴方程无解;
②n2-5n-14=0,
解得:n=-2或n=7.
故M点坐标为(-2,7),(7,16).
点评:本题考查了二次函数的综合题型,其中涉及到的知识点有待定系数法求一次函数解析式和二次函数解析式、三角形的面积求法、点到直线的距离公式等.计算量较大,涉及面较广,要认真对待.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案