精英家教网 > 初中数学 > 题目详情

如图,已知正比例函数和反比例函数的图象交于点A(m,-2).

(1)求反比例函数的解析式;

(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;

(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.


1);(2);(3)菱形.

【解析】(1)设反比例函数的解析式为),∵A(m,﹣2)在上,∴﹣2=2m,∴m=﹣1,∴A(﹣1,﹣2),又∵点A在上,∴k=2,∴反比例函数的解析式为

(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为

(3)四边形OABC是菱形.∵A(﹣1,﹣2),∴OA==,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在上,∴n=1,∴C(2,1),OC==,∴OC=OA,∴四边形OABC是菱形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在□ABCD中,AB=5,BC=8,∠ABC,∠BCD的角平分线分别交AD于E和F,BE与CF交于点G,则△EFG与△BCG面积之比是(      )

A.5:8          B.25:64           C.1:4            D.1:16

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形AOCD的顶点A的坐标是(0,4).动点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,同时动点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.当其中一点到达终点时,另一点也停止运动.设运动时间为t(秒),当t=2(秒)时,PQ=.解答下列问题:

(1)求点D的坐标;

(2)直接写出t的取值范围;

(3)连接AQ并延长交x轴于点E,把AQ沿AD翻折,点Q落在CD延长线上点F处,连接EF.

①t为何值时,PQ∥AF;

②△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


计算;分解因式:=                

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,△ABC绕点A顺时针旋转45°得到△,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于         。 

查看答案和解析>>

科目:初中数学 来源: 题型:


铜陵学院毕业生小张响应国家“自主创业”的号召,投资开办了一个装饰品商店,该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:(1≤x≤30,且x为整数);又知前20天的销售价格Q1(元/件)与销售时间x(天)之间有如下关系:(1≤x≤20,且x为整数),后10天的销售价格Q2(元/件)与销售时间x(天)之间有如下关系:Q2=45(21≤x≤30,且x为整数).

(1)第25天该商店的日销售利润为多少元?

(2)试写出该商店日销售利润y(元)关于销售时间x(天)之间的函数关系式;

(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列图形中,不是轴对称图形的是(     )

查看答案和解析>>

科目:初中数学 来源: 题型:


解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:


1)如图1,已知△ABC,以AB,AC为边向△ABC外做等边△ABD和等边△ACE.连接BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹)

(2)如图2,已知△ABC,以AB,AC为边向外做正方形ABFD和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由.

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:

如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=10米,AC=AE.求BE的长.

 

查看答案和解析>>

同步练习册答案