【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.抛物线y= x2+bx+c经过点C,且对称轴为x=﹣ ,并与y轴交于点G.
(1)求抛物线的解析式及点G的坐标;
(2)将Rt△ABC沿x轴向右平移m个单位,使B点移到点E,然后将三角形绕点E顺时针旋转α°得到△DEF.若点F恰好落在抛物线上.
①求m的值;
②连接CG交x轴于点H,连接FG,过B作BP∥FG,交CG于点P,求证:PH=GH.
【答案】
(1)
解:根据题意得:
解得:
∴抛物线的解析式为:y= x2+ x- ,点G(0,﹣ )
(2)
解:①过F作FM⊥y轴,交DE于M,交y轴于N,
由题意可知:AC=4,BC=3,则AB=5,FM= ,
∵Rt△ABC沿x轴向右平移m个单位,使B点移到点E,
∴E(﹣4+m,0),OE=MN=4﹣m,FN= ﹣(4﹣m)=m﹣ ,
在Rt△FME中,由勾股定理得:EM= = ,
∴F(m﹣ , ),
∵F抛物线上,
∴ = (m﹣ )2+ (m﹣ )﹣ ,
5m2﹣8m﹣36=0,
m1=﹣2(舍), ;
②易求得FG的解析式为:y= x﹣ ,
CG解析式为:y=﹣ x﹣ ,
∴ x﹣ =0,x=1,则Q(1,0),
﹣ x﹣ =0,x=﹣1.5,则H(﹣1.5,0),
∴BH=4﹣1.5=2.5,HQ=1.5+1=2.5,
∴BH=QH,
∵BP∥FG,
∴∠PBH=∠GQH,∠BPH=∠QGH,
∴△BPH≌△QGH,
∴PH=GH.
【解析】(1)把点C坐标代入y= x2+bx+c得一方程,利用对称轴公式得另一方程,组成方程组求出解析式,并求出G点的坐标;(2)①作辅助线,构建直角△DEF斜边上的高FM,利用直角三角形的面积相等和勾股定理可表示F的坐标,根据点F在抛物线上,列方程求出m的值;②F点和G点坐标已知,可以求出直线FG的方程,那么FG和x轴的交点坐标(设为Q)可以知道,C点坐标已知,CG的方程也可以求出,那么H点坐标可以求出,可以证明△BPH和△MGH全等.本题是二次函数的综合题,考查了待定系数法求函数(二次函数、一次函数)的解析式,利用解析式求与坐标轴交点坐标,利用面积法求斜边上的高及三角形全等的性质等;综合性较强,但难度不大,是一道不错的中考压轴题.
【考点精析】本题主要考查了确定一次函数的表达式和全等三角形的性质的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;全等三角形的对应边相等; 全等三角形的对应角相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】(3分)如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB= cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义,我们把对角线互相垂直的四边形叫做垂美四边形.
概念理解:如图②,在四边形ABCD中,如果AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
性质探究:如图①,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
问题解决:如图③,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连结CE、BG、GE.若AC=2,AB=5,则①求证:△AGB≌△ACE;
②GE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】上网流量、语音通话是手机通信消费的两大主体,目前,某通信公司推出消费优惠新招﹣﹣“定制套餐”,消费者可根据实际情况自由定制每月上网流量与语音通话时间,并按照二者的阶梯资费标准缴纳通信费.下表是流量与语音的阶梯定价标准.
流量阶梯定价标准 | |
使用范围 | 阶梯单价(元/MB) |
1﹣100MB | a |
101﹣500MB | 0.07 |
501﹣20GB | b |
语音阶梯定价标准 | |
使用范围 | 阶梯资费(元/分钟) |
1﹣500分钟 | 0.15 |
501﹣1000分钟 | 0.12 |
1001﹣2000分钟 | m |
【小提示:阶梯定价收费计算方法,如600分钟语音通话费=0.15×500+0.12×(600﹣500)=87元】
(1)甲定制了600MB的月流量,花费48元;乙定制了2GB的月流量,花费120.4元,求a,b的值.(注:1GB=1024MB)
(2)甲的套餐费用为199元,其中含600MB的月流量;丙的套餐费用为244.2元,其中包含1GB的月流量,二人均定制了超过1000分钟的每月通话时间,并且丙的语音通话时间比甲多300分钟,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于( )
A.1
B.2
C.4
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究
问题1 已知:如图1,三角形ABC中,点D是AB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为 .
拓展
问题2 已知:如图2,三角形ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.
推广
问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DE与DF之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:
(1)频数分布表中a= , b= , c=
(2)补全频数分布直方图
(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.
频数分布表
分组(分) | 频数 | 频率 |
50<x 60 | 2 | 0.04 |
60<x 70 | 12 | a |
70<x<80 | b | 0.36 |
80<x 90 | 14 | 0.28 |
90<x 100 | c | 0.08 |
合计 | 50 | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,点D在边BC上,DE∥AB交AC于E,延长DE至点F,使EF=AE,联结AF、BE和CF.
(1)求证:△EDC是等边三角形;
(2)找出图中所有的全等三角形,用符号“≌”表示,并对其中的一组加以证明;
(3)若BE⊥AC,试说明点D在BC上的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com