【题目】探究:如图1和2,四边形中,已知,,点,分别在、上,.
(1)①如图 1,若、都是直角,把绕点逆时针旋转至,使与重合,则能证得,请写出推理过程;
②如图 2,若、都不是直角,则当与满足数量关系_______时,仍有;
(2)拓展:如图3,在中,,,点、均在边上,且.若,求的长.
【答案】(1)①见解析;②,理由见解析;(2)
【解析】
(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;
②根据旋转的性质得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;
(2)根据等腰直角三角形性质好勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3x,根据勾股定理得出方程,求出x即可.
(1)①如图1,
∵把绕点逆时针旋转至,使与重合,
∴,,
∵,,
∴,
∴,
即,
在和中
∴,
∴,
∵,
∴;
②,
理由是:
把绕点旋转到,使和重合,
则,,,
∵,
∴,
∴,,在一条直线上,
和①知求法类似,,
在和中
∴,
∴,
∵,
∴;
故答案为:
(2)∵中,,
∴,由勾股定理得:
,
把绕点旋转到,使和重合,连接.
则,,,
∵,
∴,
∴,
在和中
∴,
∴,
设,则,
∵,
∴,
∵,,
∴,
由勾股定理得:,
,
解得:,
即.
科目:初中数学 来源: 题型:
【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”:如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.解决问题:
(1)如图1,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P为拋物线为常数,)上任意一点,将抛物线绕顶点G逆时针旋转90°后得到的图象与轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.
(1)抛物线的对称轴是直线________,当m=2时,点P的横坐标为4时,点Q的坐标为_________;
(2)设点Q请你用含m,的代数式表示则________;
(3)如图,点Q在第一象限,点D在轴的正半轴上,点C为OD的中点,QO平分∠AQC,当AQ=2QC,QD=时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.
(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;
(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点P(m,4)在反比例函数y=﹣的图象上,正比例函数的图象经过点P和点Q(6,n).
(1)求正比例函数的解析式;
(2)求P、Q两点之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com