【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
【答案】(1)5,20,80;(2)图见解析;(3).
【解析】试题分析:(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的人数;
(2)根据(1)中求得的数据可补充完整统计图;
(3)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女同学和1名男同学的结果数,然后根据概率公式求解.
试题解析:(1)调查的总人数为20÷40%=50(人),
所以喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);
“乒乓球”的百分比==20%,
因为800×=80,
所以估计全校学生中有80人喜欢篮球项目;
故答案为5,20,80;
(2)如图,
(3)画树状图为:
共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,
所以所抽取的2名同学恰好是1名女同学和1名男同学的概率==.
科目:初中数学 来源: 题型:
【题目】如图,抛物线交X轴于点A、B(A左B右),交Y轴于点C,
=6,点P为第一象限内抛物线上的一点.
(1)求抛物线的解析式;
(2)若∠PCB=45°,求点P的坐标;
(3)点Q为第四象限内抛物线上一点,点Q的横坐标比点P的横坐标大1,连接PC、
AQ,当PC=AQ时,求点P的坐标以及ΔPCQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△PAD的面积为( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为_____cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在7×7网格中,每个小正方形的边长都为1.
(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;
(2)△ABC的面积为______;
(3)判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图表示购买某种商品的个数与付款数之间的关系
(1)根据图形完成下列表格
购买商品个数(个) | 2 | 4 | 6 | 7 |
付款数(元) |
|
|
|
|
(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·贵港)如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标
为(-1,1),点C的坐标为(-4,2),则这两个正方形位似中心的坐标是 _ ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com