精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ACB=90°,CD是高,AC=8,CB=6,AB=10,求:
(1)三角形面积S△ABC
(2)CD的长.
考点:三角形的面积
专题:
分析:(1)根据三角形的面积公式即可求得三角形面积S△ABC
(2)根据三角形的面积S═
1
2
AB•CD,就可求得.
解答:解:(1)∵∠ACB=90°,AC=8,CB=6,
∴S△ABC=
1
2
CB•AC=
1
2
×6×8=24;
(2)∵△ABC中,∠ACB=90°,CD是高,
∴S△ABC=
1
2
AB•CD,
∴CD=
2S△ABC
AB
=
2×24
10
=
24
5
点评:本题考查了直角三角形面积的不同表示方法,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下列方程是一元一次方程的是(  )
A、x+y=4
B、3y=1
C、x2-x-1=0
D、x+
1
x
=0

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB与CD相交于点O,射线OF,OD分别是∠AOE,∠BOE的角平分线.
(1)请写出∠EOF的所有余角:
 

(2)请写出∠DOE的所有补角:
 

(3)若∠AOC=
1
6
∠FOB,求∠COE的度数;
(4)试问射线OD与OF之间有什么特殊的位置关系?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在12×12的正方形网格中建立坐标系,△ABC顶点都在边长为1的小正方形的格点上.
(1)点A坐标是
 

(2)画出△ABC关于y轴对称的△A1B1C1
(3)在x轴正半轴上找一点D,使得以D、B、C为顶点的三角形是等腰三角形,请直接写出符合条件的点D坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠B=45°,AB=4cm,点P为∠ABC的边BC上一动点,则当BP=
 
cm时,△BAP为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列比较大小:①
5
2
2
;②
1-
5
2
7
100
;③
7
+1<5;④
8
-1
2
2
.其中正确的是(  )
A、①③B、③④C、①④D、②④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O是坐标原点,抛物线y=ax2+bx与x轴正半轴交于点A,对称轴DE交x轴于点E.点B在第二象限,过点B作BC⊥x轴于点C,连结AB,且AB=10,AC=8.将点B向右平移5个单位后,恰好与抛物线的顶点D重合.
(1)求点D的坐标;
(2)求该抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

将如图所示的“大箭头”按肩头所指的方向平移3厘米,请你作出平移后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,∠A=120°,BC=8cm,AB的垂直平分线交BC于点M,交AB于点D,AC的垂直平分线交BC于点N,交AC于点E,求MN的长.

查看答案和解析>>

同步练习册答案