精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,有二次函数y=-
3
2
x2-
3
x+
3
3
2
,顶点为H,与x轴交于A、B两点(A在B左侧),易证点H、B关于直线l:y=
3
3
x+
3
对称,且A在直线l上.过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,则HN+NM+MK的最小值为
8
8

分析:y=-
3
2
x2-
3
x+
3
3
2
=0,则可求出抛物线和x轴的交点坐标,即A和B的坐标,再把抛物线解析式配方可求出顶点H的坐标,进而求出过A和H点的直线解析式,
因为过点B作直线BK∥AH交直线l于K点,所以直线BK的斜率和直线AH的相等,又过B,所以可求出直线BK的解析式,再把直线l的解析式和BK的解析式联立,即可求出K的坐标,根据点H、B关于直线AK对称,得出HN+MN的最小值是MB,过点K作直线AH的对称点Q,连接QK,交直线AH于E,得到BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,由勾股定理得QB=8,即可得出答案.
解答:解:设y=-
3
2
x2-
3
x+
3
3
2
=0,
解得x1=-3,x2=1,
∵B点在A点右侧,
∴A点坐标为(-3,0),B点坐标为(1,0),
y=-
3
2
x2-
3
x+
3
3
2
=-
3
2
(x+1)2+2
3

∴顶点H的坐标是(-1,2
3
),
设直线AH的解析式为y=kx+b,把A和H点的坐标代入求出k=
3
,b=3
3

∵过点B作直线BK∥AH,
∴直线BK的解析式为y=mx+n中的m=
3

又因为B在直线BK上,代入求出n=-
3

∴直线BK的解析式为:y=
3
x-
3

联立
y=
3
3
x+
3
y=
3
x-
3
解得:
x=3
y=2
3

∴交点K的坐标是(3,2
3
),
则BK=4,
∵点H、B关于直线AK对称,K(3,2
3
),
∴HN+MN的最小值是MMB,KD=KE=2
3

过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,KD=KE=2
3

则QM=MK,QE=EK=2
3
,AE⊥QK,
∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,
∵BK∥AH,
∴∠BKQ=∠HEQ=90°,
由勾股定理得QB=
BK2+QK2
=8,
∴HN+NM+MK的最小值为8.
答:HN+NM+MK和的最小值是8.
故答案为:8.
点评:本题主要考查对勾股定理,解二元一次方程组,二次函数与一元二次方程,二次函数与X轴的交点,用待定系数法求二次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案