精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,∠CAD=30°,AC=BC=AD.
求证:BD=CD.

证明:如图,过C作CE⊥AD于E,过D作DF⊥BC于F.
∵∠CAD=30°,∴∠ACE=60°,且CE=AC,
∵AC=AD,∠CAD=30°,∴∠ACD=75°,
∴∠FCD=90°-∠ACD=15°,∠ECD=∠ACD-∠ACE=15°,
在△CED和△CFD中

∴△CED≌△CFD,
∴CF=CE=AC=BC,
∴CF=BF.
∴Rt△CDF≌Rt△BDF,
∴BD=CD.
分析:可过C作CE⊥AD于E,过D作DE⊥BC于F,依据题意可得∠FCD=∠ECD,由角平分线到角两边的距离相等可得DF=DE,进而的△CED≌△CFD,由对应边又可得Rt△CDF≌Rt△BDF,进而可得出结论.
点评:本题主要考查了全等三角形的判定及性质以及等腰三角形的性质问题,能够熟练运用其性质进行解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案