精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.

(1)求b的值;

(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2

当x2﹣x1=3时,结合函数图象,求出m的值;

把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.

【答案】(1)b=2(2)①﹣②﹣4≤m≤﹣2

【解析】分析:(1)利用二次函数的对称轴公式即可求出b值;

2①根据二次函数图象的轴对称性,即可得出答案;

②根据xy的取值范围,即可得m的取值范围.

详解:1∵抛物线的对称轴为直线x =2

b=2

2①∴抛物线的表达式为

Ax1y),Bx2y),

∴直线AB平行x轴.

AB=3

∵对称轴为x =2

AC=

∴当时,

②当y=m=-4时,0≤x≤5时,

y=m=-2时,0≤x≤5时,

m的取值范围为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题情境:将一副直角三角板(Rt△ABCRt△DEF)按图1所示的方式摆放,其中∠ACB=90°CA=CB∠FDE=90°OAB的中点,点D与点O重合,DF⊥AC于点MDE⊥BC于点N,试判断线段OMON的数量关系,并说明理由.

探究展示:小宇同学展示出如下正确的解法:

解:OM=ON,证明如下:

连接CO,则COAB边上中线,

∵CA=CB∴CO∠ACB的角平分线.(依据1

∵OM⊥ACON⊥BC∴OM=ON.(依据2

反思交流:

1)上述证明过程中的依据1”依据2”分别是指:

依据1

依据2

2)你有与小宇不同的思考方法吗?请写出你的证明过程.

拓展延伸:

3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点MBC的延长线与DE垂直相交于点N,连接OMON,试判断线段OMON的数量关系与位置关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A100),C04),DOA的中点,PBC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是作已知角的角平分线”的尺规作图过程.

已知:如图1,MON

求作:射线OP,使它平分MON

作法:如图2

(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B

(2)连结AB

(3)分别以点AB为圆心,大于AB的长为半径作弧,两弧相交于点P

(4)作射线OP

所以,射线OP即为所求作的射线.

请回答:该尺规作图的依据是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径作O,过点AO的切线AC,连结BC,交O于点D,点EBC边的中点,连结AE

(1)求证:∠AEB=2∠C

(2)若AB=6,,求DE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y1kx+by2=﹣4x+a的图象如图所示,且A04),C(﹣20).

1)由图可知,不等式kx+b0的解集是   

2)若不等式kx+b>﹣4x+a的解集是x1

①求点B的坐标;

②求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:

10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;

②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生

7~15岁期间,男生的平均身高始终高于女生的平均身高

④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.

以上结论正确的是(

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍

(1)求甲、乙两个工程队每天各修路多少千米?

(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.

1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM ;在图2中,OM是否平分∠CON?请说明理由;

2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;

3)将图1中的三角板绕点O按每2的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 (直接写出结果)

查看答案和解析>>

同步练习册答案