【题目】如图,一次函数的图象与x轴、y轴分别交于A、C两点,与反比例函数的图象交于B点,B点在第四象限,BD垂直平分OA,垂足为D,OB=,OA=BD.
(1)求该一次函数和反比例函数的解析式;
(2)延长BO交反比例函数的图象于点E,连接ED、EC,求四边形BCED的面积.
【答案】(1)y=2x﹣4;(2)6
【解析】
(1)首先设OD=t,根据BD垂直平分OA,OA=BD,可得出OA=2t,BD=2t,进而得出B(t,﹣2t),又因为OB=,可得t2+(2t)2=()2,得出t1=1,t2=﹣1(舍去),明确两点坐标A(2,0),B(1,﹣2),再设反比例函数解析式为y=,把B(1,﹣2)代入即可求出反函数解析式;设直线AC的解析式为y=kx+b,把A(2,0),B(1,﹣2)代入即可得出一次函数解析式;
(2)根据点E与点B关于原点对称,可得出E(﹣1,2),当x=0时,得出C(0,﹣4),
即可得出四边形BCED的面积.
解:(1)设OD=t,
∵BD垂直平分OA,OA=BD,
∴OA=2t,BD=2t,
∴B(t,﹣2t),
∵OB=,
∴t2+(2t)2=()2,解得t1=1,t2=﹣1(舍去),
∴A(2,0),B(1,﹣2),
设反比例函数解析式为y=,
把B(1,﹣2)代入得m=1×(﹣2)=﹣2,
∴反比例函数解析式为y=﹣;
设直线AC的解析式为y=kx+b,
把A(2,0),B(1,﹣2)代入得,解得,
∴一次函数解析式为y=2x﹣4;
(2)∵点E与点B关于原点对称,
∴E(﹣1,2),
当x=0时,y=2x﹣4=﹣4,则C(0,﹣4),
∴四边形BCED的面积=S△OCE+S△BOC+S△BDE=×4×1+×4×1+×2×2=6.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是( )
A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度
B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度
C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度
D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频率分布直方图”(如图).请回答:
(1)该中学参加本次数学竞赛的有多少名同学?
(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?
(3)这次竞赛成绩的中位数落在哪个分数段内?
(4)图中还提供了其它信息,例如该中学没有获得满分的同学等等,请再写出两条信息.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了弘扬传统文化,提高学生文明意识,育红学校组织全校80个班级进行“诵经典,传文明”演讲赛,比赛后对各班成绩进行了整理,分成4个小组(x表示成绩,单位:分):A组:60≤x<70;B组:70≤x<80;C组:80≤x<90;D组:90≤x<100,并且绘制了如右不完整的扇形统计图.请根据图中信息,解答下列问题:
(1)求扇形统计图中,B组对应的圆心角是多少度?
(2)学校从D组中选取了2名男生和2名女生组成代表队参加了区级比赛,由于表现突出,被要求再从这4名学生中随机选取两名同学参加市级比赛,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△AOB,A(0,﹣3),B(﹣2,0).将△OAB先绕点B 逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;
(1)在图中画出上述变换的图形,并涂黑;
(2)求△OAB在上述变换过程所扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).
(1)线段CN= ;
(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;
(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com