精英家教网 > 初中数学 > 题目详情

【题目】如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(a0).设半圆形条钢的总个数为xx为正整数),护栏总长度为y厘米.

1)当a50x2时,护栏总长度y   厘米;

2)当a60时,用含x的代数式表示护栏总长度y(结果要化简);

3)在(2)的条件下,若要使护栏总长度为50x+430,请求出x的值.

【答案】(1)130;(2)y60x+20;(3)41.

【解析】

1)观察图形可知y80+50×21),计算即可;
2)护栏总长度y80+60x1),化简即可;
3)由题意建立方程60x+2050x+430,求出其解即可.

解:(1)由题意得

a50x2时,

y80+50×21)=130

故答案为:130

2)当a60时,护栏总长度y80+60x1),

y60x+20

3)由题意,得:60x+2050x+430

x41

答:x的值为41

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与四边形ABCO的边所在直线相切时,P点的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知我们把任意形如的五位自然数其中称之为喜马拉雅数例如在自然数所以就是一个喜马拉雅数.并规定能被自然数整除的最大的喜马拉雅数记为能被自然数整除的最小的喜马拉雅数记为

(1)求证任意一个喜马拉雅数都能被3整除

(2)的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校要开展校园艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下两幅不完整的统计图.

请根据图中信息,回答下列问题:

1)本次共调查了_________名学生.

2)在扇形统计图中,“歌曲”所在扇形的圆心角等于_________度.

3)补全条形统计图(并标注频数).

4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有 人,在扇形统计图中,m的值是

(2)将条形统计图补充完整;

(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D 的中点.

(1)求证:AB=BC;

(2)求证:四边形BOCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得AC之间的距离为12cm,点BD之间的距离为16m,则线段AB的长为  

A. B. 10cmC. 20cmD. 12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:RtABC中,∠C90°,AC3BC4PAB上任意一点,PFACFPEBCE,则EF的最小值是_____

查看答案和解析>>

同步练习册答案