精英家教网 > 初中数学 > 题目详情
如图,Rt△AOB中,O为坐标原点,∠AOB=90°,OA:OB=1:2,如果点A在反比例函数y=
1
x
(x>0)的图象上运动,那么点B在函数
y=-
4
x
y=-
4
x
(填函数解析式)的图象上运动.
分析:如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.
解答:解:分别过A、B作AC⊥y轴于C,BD⊥y轴于D,设A(a,b),
∵点A在反比例函数y=
1
x
(x>0)的图象上,
∴ab=1.
在△OAC与△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,
∴△OAC∽△BOD,
OC
BD
=
AC
OD
=
OA
OB
=
1
2

b
BD
=
a
OD
=
1
2

∴BD=2b,OD=2a,
∴BD•OD=4ab=4,
又∵点B在第四象限,
∴点B在函数的图象y=-
4
x
上运动.
故答案为:y=-
4
x
点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定及性质,用待定系数法求函数的解析式,综合性较强,同学们注意培养自己解答综合题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限.OA和AB的长是方程x2-3
5
x+10=0
两根,且OA<AB.
(1)求直线AB的解析式;
(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为E,设点C的坐标为(x,0).
①是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;
②设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△AOB中,∠AOB=90°,∠A=36°,以OB为半径作⊙O交AB于C,D为优弧BC上一点,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限,OA和AB的长是方程x2-3
5
x+10=0
两根,且OA<AB.
(1)求直线AB的解析式;
(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为E,是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△AOB中∠AOB=90°,点A在y=-
4
x
上,点B在y=
6
x
上,则
OA
OB
=
6
3
6
3

查看答案和解析>>

同步练习册答案