【题目】如图,矩形ABCD中,AC、BD交于点O,∠AOB=60°,DE平分∠ADC交BC于点E,连接OE,则∠COE= .
【答案】75°
【解析】解:∵∠AOB=60°, ∴∠DOC=∠AOB=60°,
∵四边形ABCD是矩形,
∴∠DCB=90°,AC=BD,AC=2CO,BD=2OD,
∴OC=OD,
∴△COD是等边三角形,
∴DC=OC,∠ACD=60°,
∴∠ACB=90°﹣60°=30°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠CDE=∠DEC,
∴DC=CE,
∴CE=OC,
∵∠OCE=30°,
∴∠COE= (180°﹣30°)=75°;
所以答案是:75°.
【考点精析】通过灵活运用矩形的性质,掌握矩形的四个角都是直角,矩形的对角线相等即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,D是AC的中点,CE⊥BD于点E,交BA的延长线于点F.若BF=12,则△FBC的面积为( )
A. 40 B. 46 C. 48 D. 50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线相等的四边形
D.对角线互相垂直的四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=x3+2,不画图象,解答下列问题:
(1)判断A(0,2)、B(2,0)、C(, ﹣1)三点是否在该函数图象上,说明理由;
(2)若点P(a,0)、Q(﹣, b)都在该函数的图象上,试求a、b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索:
(x-1)(x+1)=x2-1, (x-1)(x2+x+1)=x3-1,
(x-1)(x3+x2+x+1)=x4-1, (x-1)(x4+x3+x2+x+1)=x5-1,
……
(1)试写出第五个等式;
(2)试求26+25+24+23+22+2+1的值;
(3)判断22 017+22 016+22 015+…+22+2+1的值的个位数字是几.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com