科目:初中数学 来源: 题型:
已知甲、乙为两把不同刻度的直尺,且同一把直尺的刻度之间距离相等,小洋同学将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图所示。若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图(九)所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?( ).
(A) 24 (B) 28 (C) 31 (D) 32
查看答案和解析>>
科目:初中数学 来源: 题型:
问题提出
如图①,已知直线l与线段AB平行,试只用直尺作出AB的中点.
初步探索
如图②,在直线l的上方取一个点E,连接EA、EB,分别与l交于点M、N,连接MB、NA,交于点D,再连接ED并延长交AB于点C,则C就是线段AB 的中点.
推理验证
利用图形相似的知识,我们可以推理验证AC=CB.
(1)若线段a、b、c、d长度均不为0,则由下列比例式中,一定可以得出b=d的是()
| A. | B. | C. | D. |
(2)由MN∥AB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,
△FND∽△CAD.
所以,有
=
=
=
=
,
所以,AC=CB.
拓展研究
如图③,△ABC中,D是BC的中点,点P在AB上.
(3)在图③中只用直尺作直线l∥BC.
(4)求证:l∥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ABC中,∠ABC= 90°,以AB为直径的⊙O与AC边交与点D.过D作⊙O的切线交BC与点E.连接OE.
(1)证明:OE∥AC;
(2)①当∠BAC= °时,四边形ODEB是正方形;
②当∠BAC= °时,AD=3DE.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( )
![]()
|
| A. | 50° | B. | 60° | C. | 70° | D. | 80 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形A
ECF的面积是多少?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com