精英家教网 > 初中数学 > 题目详情

【题目】解方程

1 3x-2(x-1)= 2- 3(5-2x)

2

3

4

【答案】1x=3;2x=5;3x=-8;4x=-9.2

【解析】

1)去括号,移项,合并同类项,系数化为1可得;(2)去分母,去括号,移项,合并同类项,系数化为1可得;(3)去括号,移项,合并同类项,系数化为1可得;(4)去分母,去括号,移项,合并同类项,系数化为1可得;

解:(1 3x-2(x-1)= 2- 3(5-2x)

3x-2x+2=2-15+6x

3x-2x-6x=2-15-2

-5x=-15

x=3

2

4(x+1)=5(x+1)-6

4x+4=5x+5-6

4x-5x=5-6-4

-x=-5

x=5

3

x=-8

4

2(x-3)-5(x+4)=1.6

2x-6-5x-20=1.6

2x-5x=1.6+6+20

-3x=27.6

x=-9.2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了改善办公条件,计划从厂家购买AB两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.

1)求AB两种型号电脑每台价格各为多少万元?

2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.

求y关于x的函数关系式;

该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABACAD为∠BAC的角平分线,DEF为∠BAC的角平分线上的若干点.如图1,连接BDCD,图中有1对全等三角形;如图2,连接BDCDBECE,图中有3对全等三角形;如图3,连接BDCDBECEBFCF,图中有6对全等三角形;依此规律,第n个图形中有_____对全等三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形的边长为,点边上的一个动点,连接,过点的垂线交于点,以为边作正方形,顶点在线段上,对角线相交于点.(1)若,则

(2)①求证:点一定在的外接圆上;

当点从点运动到点时,点也随之运动,求点经过的路径长;

(3)在点从点到点的运动过程中,的外接圆的圆心也随之运动,求该圆心到边的距离的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P90°A(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P90°-∠A(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P90°A.上述说法正确的个数是(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离0.7米,顶端到地面距离2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离2米,求小巷的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:

1

2

3

4

5

60

75

100

90

75

70

90

80

80

80

根据上表解答下列问题:

(1)完成下表:

平均成绩(分)

中位数(分)

众数(分)

方差

75

190

80

80

(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(80)的成绩视为秀,则小王、小李在这五次测试中的优秀率各是多少?

(3)历届比赛表明,成绩达到80分以上(80)就很可能获奖,成绩达到90分以上(90)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.

查看答案和解析>>

同步练习册答案