精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.

(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

【答案】
(1)解:∵△ABC是边长为6的等边三角形,

∴∠ACB=60°,

∵∠BQD=30°,

∴∠QPC=90°,

设AP=x,则PC=6﹣x,QB=x,

∴QC=QB+BC=6+x,

∵在Rt△QCP中,∠BQD=30°,

∴PC= QC,即6﹣x= (6+x),解得x=2,

∴AP=2


(2)解:当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:

作QF⊥AB,交直线AB于点F,连接QE,PF,

又∵PE⊥AB于E,

∴∠DFQ=∠AEP=90°,

∵点P、Q速度相同,

∴AP=BQ,

∵△ABC是等边三角形,

∴∠A=∠ABC=∠FBQ=60°,

在△APE和△BQF中,

∵∠AEP=∠BFQ=90°,

∴∠APE=∠BQF,

∴△APE≌△BQF(AAS),

∴AE=BF,PE=QF且PE∥QF,

∴四边形PEQF是平行四边形,

∴DE= EF,

∵EB+AE=BE+BF=AB,

∴DE= AB,

又∵等边△ABC的边长为6,

∴DE=3,

∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.


【解析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x= (6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE= AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知线段AB=20 cm,直线AB上有一点C,BC=6 cm,M是线段AB的中点,N是线段BC的中点,MN=____________ cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个定点坐标分别为A﹣13),B﹣11),C﹣32).

1)请画出△ABC关于y轴对称的△A1B1C1

2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出SA1B1C1SA2B2C2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.
求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车经销商购进两种型号的低排量汽车,其中型汽车的进货单价比型汽车的进货单价多2万元,经销商花50万元购进型汽车的数量与花40万元购进型汽车的数量相等.销售中发现型汽车的每周销量(台)与售价(万元/台)满足函数关系式 型汽车的每周销量(台)与售价(万元/台)满足函数关系式

1)求两种型号的汽车的进货单价;

2)已知型汽车的售价比型汽车的售价高2万元/台,设型汽车售价为万元/台.每周销售这两种车的总利润为万元,求的函数关系式, 两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:x2﹣6x+9=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象与一次函数的图象交于点AB,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.

1k的值

2)设直线PAPBx轴分别交于点MN,求证:PMN是等腰三角形;

3)设点Q是反比例函数图象上位于PB之间的动点(与点PB不重合),连接AQBQ,比较PAQPBQ的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠1=4°18′,∠2=4.4°,则∠1__________∠2.(填“大于、小于或等于)

查看答案和解析>>

同步练习册答案