精英家教网 > 初中数学 > 题目详情

【题目】如图,反比例函数(k≠0)的图象经过点A(1,2)和B(2,n),

(1)以原点O为位似中心画出△A1B1O,使=

(2)y轴上是否存在点P,使得PA+PB的值最小?若存在,求出P的坐标;若不存在,请说明理由.

【答案】(1)作图见解析;(2)存在,P(0,).

【解析】

(1)有两种情形,分别画出图象即可;
(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB的值最小.求出直线BA′的解析式即可解决问题.

(1)△A1B1O的图象如图所示.

(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB的值最小.

∵点A(1,2)在反比例函数y=上,

∴k=2,

∴B(2,1),

∵A′(﹣1,2),

设最小BA′的解析式为y=kx+b,则有

解得

∴直线BA′的解析式为y=﹣x+

∴P(0,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线相交于点,半径为的圆心在直线上,且与点的距离为.如果的速度,沿由的方向移动,那么________秒种后与直线相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,平分,与相交于点边的中点,连接相交于点,下列结论:①;②;③是等腰三角形;④.正确的有( )个.

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)设计费能达到24000元吗?为什么?

(3)当x是多少米时,设计费最多?最多是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将一个长方形纸片沿对角线折叠.点落在点处,于点,已知,则折叠后重合部分的面积为(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,与x轴的另一个交点为C,顶点为D.

(1)求抛物线的解析式;

(2)画出抛物线的图象;

(3)x轴上是否存在点N使△ADN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红爸爸从家骑电瓶车出发,沿一条直路到相距2400m的学校接小红回家,小红爸爸出发的同时,小红以96m/min的速度从学校沿同一条道路步行回家,小红爸爸赶到学校校门口等候2min后知道小红已离校,立即沿原路以原速返回,设他们出发的时间为t min,图示中的折线OABD表示小红爸爸与家之间的距离S1t之间的函数关系,线段EF表示小红与家之间的距离S2t之间的函数关系,则小红爸爸从家出发在返回途中追上小红的时间是(

A.12minB.16minC.18minD.20min

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数yax22ax1(a是常数,a≠0),下列结论正确的是( )

A. a1,函数图象过点(1,1)

B. a=-2,函数图象与x轴没有交点

C. a>0,则当x≥1,yx的增大而减小

D. a<0,则当x≤1,yx的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线PA交O于A、B两点,AE是O的直径,点C为O上一点,且AC平分PAE,过C作CDPA,垂足为D.

(1)求证:CD为O的切线;

(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

查看答案和解析>>

同步练习册答案