精英家教网 > 初中数学 > 题目详情

已知:如图,在平面直角坐标系xOy中,边长为数学公式的等边△ABC随着顶点A在抛物线数学公式上运动而运动,且始终有BC∥x轴.
(1)当顶点A运动至与原点重合时,顶点C是否在该抛物线上?
(2)△ABC在运动过程中有可能被x轴分成两部分,当上下两部分的面积之比为1:8(即S上部分:S下部分=1:8)时,求顶点A的坐标;
(3)△ABC在运动过程中,当顶点B落在坐标轴上时,直接写出顶点C的坐标.

解:(1)当顶点A运动至与原点重合时,设BC与
y轴交于点D,如图所示.
∵BC∥x轴,BC=AC=
,AD=3.
∴C点的坐标为

∵当时,
∴当顶点A运动至与原点重合时,顶点C在抛物线上.

(2)过点A作AD⊥BC于点D,
设点A的坐标为(x,).
∵BC∥x轴,
∴x轴上部分的三角形∽△ABC.
∵S上部分:S下部分=1:8,
∴S上部分:S△ABC=1:9,

∵等边△ABC的边长为
∴AD=AC•sin60°=3.


解方程,得 x=
∴顶点A的坐标为


(3)当顶点B落在x轴时,则A点纵坐标为3,
∴3=
∴x=
∴顶点C的坐标为(2-,0)、(2+,0)、
当顶点B落在y轴时,则A点横坐标为
∴y==-3,
∴顶点C的坐标为(2,-6),
∴顶点C的坐标为. 

分析:(1)当顶点A运动至与原点重合时,设BC与y轴交于点D,如图所示.由等边三角形的性质可以求出AD的值,从而求出C的坐标.
(2)过点A作AD⊥BC于点D,设出A点的坐标,由条件表示出AD的值,再由三角函数求出AD的值,从而建立等量关系就可以求出A的坐标.
(3)B点在坐标轴上有两种情况如图,当B点在x轴上时,则A的纵坐标为3,代入抛物线的解析式求出A的横坐标就可以求出C的坐标;当B点y轴上时,可以求出A点的横坐标,代入抛物线的解析式可以求出A点的纵坐标,从而求出C点的坐标.
点评:本题是一道二次函数的综合试题,考查了点的坐标,三角形的面积,等边三角形的性质.相似三角形的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案