精英家教网 > 初中数学 > 题目详情
43、如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F、已知∠A=30°,∠FCD=80°,求∠D.
分析:由三角形内角和定理,可将求∠D转化为求∠CFD,即∠AFE,再在△AEF中求解即可.
解答:解:∵DE⊥AB(已知),
∴∠FEA=90°(垂直定义).
∵在△AEF中,∠FEA=90°,∠A=30°(已知),
∴∠AFE=180°-∠FEA-∠A(三角形内角和是180)
=180°-90°-30°
=60°.
又∵∠CFD=∠AFE(对顶角相等),
∴∠CFD=60°.
∴在△CDF中,∠CFD=60°∠FCD=80°(已知)
∠D=180°-∠CFD-∠FCD
=180°-60°-80°
=40°.
点评:熟练掌握三角形内角和内角和定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案