精英家教网 > 初中数学 > 题目详情

【题目】如图,根据图形填空:

已知:∠DAF=F,B=D,ABDC平行吗?

解:∠DAF=F (   

ADBF(   ),

∴∠D=DCF(   

∵∠B=D (   

∴∠B=DCF (   

ABDC(   

【答案】见解析.

【解析】

首先根据已知,应用内错角相等,两直线平行,证得ADBF;利用两直线平行,内错角相等,证得∠D=∠DCF,又由已知,利用等量代换,证得∠B=∠DCF,根据同位角相等,两直线平行,证得ABDC

解:∠DAF=F ( 已知),

ADBF( 内错角相等,两直线平行),

∴∠D=DCF( 两直线平行,内错角相等),

∵∠B=D ( 已知),

∴∠B=DCF ( 等量代换),

ABDC( 同位角相等,两直线平行).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD,则∠A、∠C、∠E、∠F满足的数量关系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.

(1)在图1中,7分所在扇形的圆心角等于 °

(2)请你将图2的统计图补充完整;

(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.

(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角板是学习数学的重要工具,将一副三角板中的两块直角三角板的直角顶点按如图方式叠放在一起,当且点在直线的上方时,解决下列问题:(友情提示:

1)①若,则的度数为  

②若,则的度数为  

2)由(1)猜想的数量关系,并说明理由.

3)这两块三角板是否存在一组边互相平行?若存在,请直接写出的角度所有可能的值(不必说明理由);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船从点 A 向正北方向航行,每小时航行 15 海里,小岛P 在轮船的北偏西 15°,3 小时后轮船航行到点 B,小岛 P 此时在轮船的北偏西 30°方向,在小岛 P 的周围 20 海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)操作发现:如图①,D是等边ABC的边BA上一动点(D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,你能发现AFBD之间的数量关系吗?并证明你发现的结论;

(2)类比猜想:如图②,当动点D运动至等边ABCBA的延长线时,其他作法与(1)相同,猜想AFBD(1)中的结论是否仍然成立?

(3)深入探究:Ⅰ.如图③,当动点D在等边ABCBA上运动时(DB不重合),连接DC,以DC为边在BC上方和下方分别作等边DCF和等边DCF′,连接AF,BF′,探究AF,BF′AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB、CD、EF相交于点O,OGCD,BOD=36°.

(1)求∠AOG的度数;

(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某“数学兴趣小组”根据学习函数的经验,对函数y= 的图象和性质进行了探究,探究过程如下,请补充完整:

(1)该函数的自变量x的取值范围是
(2)同学们先找到y与x的几组对应值,然后在下图的平面直角坐标系xOy中,描出各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;
(3)结合画出的函数图象,写出该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,D是函数y= (k>0,x>0)图象上两点(点A在点D的左侧),直线AD分别交x,y轴于点E,F.AB⊥x轴于点B,CD⊥x轴于点C,连结AO,BD.若BC=OB+CE,SAOF+SCDE=1,则SABD=

查看答案和解析>>

同步练习册答案