【题目】如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.
(1)求∠AOG的度数;
(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.
【答案】(1)∠AOG=54o;(2)OC是∠AOE的平分线,理由见解析.
【解析】
(1)根据对顶角的性质可得∠AOC=∠BOD=36°,利用垂直定义可得∠COG=90°,再计算出∠AOG的度数即可;(2)根据角平分线定义以及垂直定义可得∠COA=∠DOF,再根据对顶角相等可得∠DOF=∠COE,进而得出∠AOC=∠COE,即可得到OC平分∠AOE.
解:(1)∵AB、CD相交于点O,
∴∠AOC=∠BOD=36°,
∵OG⊥CD,
∴∠COG=90°,
即∠AOC+∠AOG=90°,
∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;
(2)OC是∠AOE的平分线.
∵OG是∠AOF的角平分线,
∴∠AOG=∠GOF,
∵OG⊥CD,
∴∠COG=∠DOG=90°,
∴∠COA=∠DOF,
又∵∠DOF=∠COE,
∴∠AOC=∠COE,
∴OC平分∠AOE.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC 和等边△BPE,点 P 在 BC 的延长线上,EC 的延长线交 AP 于点 M,连接 BM;下列结论:①AP=CE;②∠PME=60°;③BM 平分∠AME;④AM+MC=BM,其中正确的有____________________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,根据图形填空:
已知:∠DAF=∠F,∠B=∠D,AB与DC平行吗?
解:∠DAF=∠F ( )
∴AD∥BF( ),
∴∠D=∠DCF( )
∵∠B=∠D ( )
∴∠B=∠DCF ( )
∴AB∥DC( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正五边形广场 的边长为 米,甲、乙两个同学做游戏,分别从 、 两点处同时出发,沿 的方向绕广场行走,甲的速度为 ,乙的速度为 ,则两人第一次刚走到同一条边上时( )
A. 甲在顶点 处 B. 甲在顶点 处 C. 甲在顶点处 D. 甲在顶点处
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y= (m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,
(1)请你写出双曲线y= 的“倍双曲线”是;双曲线y= 的“半双曲线”是;
(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;
(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP , 且1≤S△MNP≤2,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究)如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
(拓展)如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.
(1)求证:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com