精英家教网 > 初中数学 > 题目详情

【题目】(1)如图①所示,P是等边△ABC内的一点,连接PA、PB、PC,将△BAPB点顺时针旋转60°得△BCQ,连接PQ.若PA2+PB2=PC2,证明∠PQC=90°;

(2)如图②所示,P是等腰直角△ABC(∠ABC=90°)内的一点,连接PA、PB、PC,将△BAPB点顺时针旋转90°得△BCQ,连接PQ.当PA、PB、PC满足什么条件时,∠PQC=90°?请说明.

【答案】1)证明见解析(2)满足:

【解析】

由旋转得△BAP≌△BCQ 满足:

∴PA=CQ PB=BQ 由旋转得△BAP≌△BCQ

∵∠PBQ=60∴PA=CQ PB=BQ

∴△PBQ为等边三角形 ∠PBQ=

∴PB=PQ ∴

∵PA+PB=PC

∴∠PQC=90

1)由旋转的性质可得到的条件是:①BP=BQPA=QC②∠ABP=∠CBQ

可证得∠PBQ=∠CBP+∠CBQ=∠CBP+∠ABP=∠ABC=60°,联立BP=BQ,即可得到△BPQ是等边三角形的结论,则BP=PQ;将等量线段代换后,即可得出PQ2+QC2=PC2,由此可证得∠PQC=90°

2)由(1)的解题思路知:△PBQ是等腰Rt△,则PQ2=2PB2,其余过程同(1),只不过所得结论稍有不同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:

根据以上信息解决下列问题:

1)在统计表中,a的值为      b的值为      

2)在扇形统计图中,八年级所对应的扇形圆心角为      度;

3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰梯形ABCD中,AD//BCEAB的中点,过点EEF//BCCD于点FAB4BC6B60°

1)求点EBC的距离;

2)点P为线段EF上的一个动点,过点PPMEFBCM,过MMN//AB交折线ADCN,连结PN,设EPx

①当点N在线段AD上时(如图2),PMN的形状是否发生改变?若不变,求出PMN的周长;若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上的AB两点分别对应数字ab,且ab满足|4a-b|+a-42=0

1a= b= ,并在数轴上面出AB两点;

2)若点P从点A出发,以每秒3个单位长度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B距离的2倍;

3)数轴上还有一点C的坐标为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,PQ两点之间的距离为4,并求此时点Q对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】abc是直角三角形的三条边长斜边c上的高的长是h给出下列结论

a2b2c2的长为边的三条线段能组成一个三角形

的长为边的三条线段能组成一个三角形

a+bc+hh的长为边的三条线段能组成直角三角形

的长为边的三条线段能组成直角三角形

其中所有正确结论的序号为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABCBA=BC,点DAB延长线上一点,DF⊥ACFBCE,

求证:△DBE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=x2+bx﹣x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点Px轴上一动点,连接DP,过点PDP的垂线与y轴交于点E.

(1)试求出二次函数的表达式和点B的坐标;

(2)当点P在线段AO(点P不与A、O重合)运动至何处时,线段OE的长有最大值,求出这个最大值;

(3)是否存在这样的点P,使PED是等腰三角形?若存在,请求出点P的坐标及此时PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,O为坐标原点,已知A(-1,1),在坐标轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有(   )

A. 10个 B. 8个 C. 4个 D. 6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC,CAB=90°,P是△ABC内一点,PA=1,PB=3,PC= .:CPA的大小

查看答案和解析>>

同步练习册答案