【题目】如图,AB是半圆的直径,O为圆心,点C是弧BE的中点,过点C作PC⊥AE于点D,交AB的延长线于点P
(1)求证:直线PC是⊙O的切线;
(2)若∠P=30°,AD=3,求阴影部分的面积.
【答案】(1)详见解析;(2).
【解析】
(1)连接OC,如图,由弧BC=弧CE得到∠BAC=∠EAC,加上∠OCA=∠OAC.则∠OCA=∠EAC,所以OC∥AE,从而得到PC⊥OC,然后根据切线的判定定理得到结论;
(2)解直角三角形求得AP,根据平行线分线段成比例定理求得OC,OP,利用勾股定理求得CP,然后根据S阴=S△OCP﹣S扇形BOC求解即可.
(1)连接OC.
∵点C为弧BE的中点,
∴弧BC=弧CE,
∴∠BAC=∠EAC.
∵OA=OC,
∴∠OCA=∠OAC,
∴∠OCA=∠EAC,
∴OC∥AE.
∵PC⊥AE,
∴OC⊥PC,
∴PC是⊙O的切线.
(2)在Rt△ADP中,∠P=30°,AD=3,
∴AP=2AD=6.
∵OC∥AD,
∴,
设OC=x,则OP=6﹣x,
∴,
解得:x=2,
∴OC=2,OP=4,
∴在Rt△OCP中,CP2,
∴S阴=S△OCP﹣S扇形BOCOCPC2.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( ).
A. 1 B. 2 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径作圆交AC、BC于点D、E两点,AF切⊙O于点A,点D是AC中点.
(1)求证:AB=BC;
(2)若,CF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(x-1)2+n,当x=3时,y=2.
(1)求抛物线的解析式,并在平面直角坐标系中画出该函数的图象;
(2)过点D(0,2)作x轴的平行线交抛物线于E,F两点,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.调查全校建档立卡户学生的人数,宜采用抽样调查
B.随机抽取某班7名学生的数学成绩:105,102,105,113,116,105,119,则数据的中位数和众数都是105
C.通过对甲、乙两组学生数学成绩的跟踪调查,整理得知两组数据的方差分别为:=0.123,=0.362,则乙组数据比甲组数据稳定
D.必然事件发生的概率为1,随机事件发生的概率为0.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O为坐标原点,抛物线y=﹣x2+bx+c经过原点,与x轴的另一个交点为A(﹣6,0),点C是抛物线的顶点,且⊙C与y轴相切,点P为⊙C上一动点.若点D为PA的中点,连结OD,则OD的最大值是( )
A.B.C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正确的结论有
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+2x+3.
(1)求它的对称轴和顶点坐标;
(2)求该抛物线与x轴的交点坐标;
(3)建立平面直角坐标系,画出这条抛物线的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?
(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com