精英家教网 > 初中数学 > 题目详情
10.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于(  )
A.10B.$\sqrt{7}$C.6D.5

分析 根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.

解答 解:∵四边形ABCD是菱形,
∴OA=$\frac{1}{2}$AC,OB=$\frac{1}{2}$BD,AC⊥BD,
∵AC=8,BD=6,
∴OA=4,OB=3,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=5,
即菱形ABCD的边长是5.
故选:D.

点评 本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.已知(x+3)(x-2)=x2+ax+b,则a+b=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知x2-3x+1=0,求:①$x+\frac{1}{x}$的值;②${x^2}+\frac{1}{x^2}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请求出小桥PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图双曲线y1=$\frac{k}{x}$(x>0,k>0)与直线y2=x相交于A(1,1),点P为双曲线上一点PS∥y轴,交直线OA于S,PQ⊥y轴,SR⊥y轴,垂足分别为Q,R.
(1)求k的值,并写出y1>y2时x的取值范围;
(2)矩形PQRS能否为正方形,若能求出P点坐标;若不能,请说明理由;
(3)在同一直角坐标系中,二次函数y3=ax2(a>0),当x>4-a时,y3>y2>y1始终成立,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如图1所示)并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:

(1)本次接受调查的总人数是5000人.
(2)请将条形统计图补充完整.
(3)在扇形统计图中,观点E的百分比是4%,表示观点B的扇形的圆心角度数为18度.
(4)假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的建议.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在方格网中已知格点△ABC和点O.
(1)画△A′B′C′和△ABC关于点O成中心对称;
(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知x+y=4,xy=6,求$\frac{{x}^{2}+{y}^{2}}{2}$的值.

查看答案和解析>>

同步练习册答案