精英家教网 > 初中数学 > 题目详情

【题目】为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.

女生进球个数的统计表

进球数(个)

人数

0

1

1

2

2

x

3

y

4

4

5

2

(1)求这个班级的男生人数;

(2)补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;

(3)该校共有学生1880人,请你估计全校进球数不低于3个的学生大约有_____人.

【答案】25

【解析】(1)根据进球数为3个的人数除以占的百分比求出男生总人数即可;

(2)求出进球数为4个的人数,以及进球数为2个的圆心角度数,补全条形统计图即可;

(3)求出进球数不低于3个的百分比,乘以1880即可得到结果.

解:(1)这个班级的男生人数为6÷24%=25(人),

则这个班级的男生人数为25人;

(2)男生进球数为4个的人数为25﹣(1+2+5+6+4)=7(人),进2个球的扇形圆心角度数为360°×=72°;

补全条形统计图,如图所示:

(3)根据题意得:47个学生中女生进球个数为6+4+2=12;男生进球数为6+7+4=17,

∴1880×=1160(人),

则全校进球数不低于3个的学生大约有1160人.

故答案为:1160.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.

(1)求证:四边形AB'C'D是菱形;

(2)四边形ABC'D′的周长为   

(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a+b=4,a﹣b=3,则a2﹣b2=(  )
A.4
B.3
C.12
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形的周长为 13cm,其中一边长为 3cm,则该等腰三角形的底边长为()

A. 7 B. 3 C. 7 3 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元.
(1)分别求出0≤x≤200和x>200时,y与x的函数表达式;
(2)小明家5月份交纳电费117元,小明家这个月用电多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(﹣8,0),点P的坐标为(-,0),直线y=x+b过点A,交y轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.

(1)判断点B是否在⊙P上?说明理由.

(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.

(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究:

如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.

(1)证明:AD=BE;

(2)求∠AEB的度数.

问题变式:

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求出∠AEB的度数以及判断线段CM、AE、BE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过A10),B03)两点,对称轴是x=1

1)求抛物线对应的函数关系式;

2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点MO点出发以每秒3个单位长度的速度在线段OB上运动.过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t

t为何值时,四边形OMPQ为矩形;

②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列说法中,正确的是

A如果两个三角形全等,则它们必是关于直线成轴对称的图形

B如果两个三角形关于某直线成轴对称,那么它们是全等三角形

C等腰三角形是关于底边中线成轴对称的图形

D一条线段是关于经过该线段中点的直线成轴对称的图形

查看答案和解析>>

同步练习册答案