【题目】如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S,并证明:S≥2.
【答案】证明:(1)∵AB是直径,AM、BN是切线,
∴,∴.
解:(2)过点D作于F,则.
由(1),∴四边形为矩形.
∴,.
∵DE、DA,CE、CB都是切线,
∴根据切线长定理,得
,.
在中,,
∴,
化简,得.
(3)由(1)、(2)得,四边形的面积,
即.
∵,当且仅当时,等号成立.
∴,即.
【解析】
(1)根据切线的性质得到它们都和直径垂直就可证明;
(2)作直角梯形的另一高,构造一个直角三角形,根据切线长定理和勾股定理列方程,再表示出关于y的函数关系式;
(3)根据直角梯形的面积公式表示梯形的面积,再根据求差法比较它们的大小.
(1)证明:是直径,、是切线,
,,
.
(2)过点作于,则.
由(1),四边形为矩形.
,.
、,、都是切线,
根据切线长定理,得
,.
在中,,,,
,
化简,得.
(3)由(1)、(2)得,四边形的面积,
即.
,当且仅当时,等号成立.
,即.
科目:初中数学 来源: 题型:
【题目】如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C落
在E处,BE与AD相交于F,下列结论:①BD2=AD2+AB2
②△ABF≌△EDF ③④AD=BD·cos45°正确的是( )
A. ①② B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+ c(a≠0).
(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;
(2)若a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);
(3)若a>0,c <0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(﹣2,0),B(0, ),C(4,0),其对称轴与x轴交于点D,若P为y轴上的一个动点,连接PD,PB+PD的最小值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)
(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机销售商从厂家购进了两种型号的手机,已知一台型手机的进价比一台型手机的进价多300元,用7500元购进型手机和用6000元购进型手机的数量相同.
(1)求一台型手机和一台型手机的进价各是多少元?
(2)在销售过程中,型手机因为性价比高,更受消费者的欢迎.为了增大型手机的销量,该销售商决定对型手机进行降价销售.经调查,当型手机的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台.如果每天销售型手机的利润为3200元,请问该手机销售商应将型手机的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=,BF=2,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com