精英家教网 > 初中数学 > 题目详情

【题目】如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C

E处,BEAD相交于F,下列结论:①BD2AD2+AB2

②△ABF≌△EDF ③④AD=BD·cos45°正确的是( )

A. ①② B. ②③ C. ①④ D. ③④

【答案】B

【解析】

直接根据勾股定理即可判定是否正确;

利用折叠可以得到全等条件证明△ABF≌△EDF

利用全等三角形的性质即可解决问题;

Rt△ABD中利用三角函数的定义即可判定是否正确.

解:①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;

根据折叠可知:DE=CD=AB∠A=∠E∠AFB=∠EFD∴△ABF≌△EDF,故说法正确;

根据可以得到△ABF∽△EDF=,故说法正确;

Rt△ABD中,∠ADB≠45°∴AD≠BD?cos45°,故说法错误.

所以正确的是②③

故选B

此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ABC中,ADBCD,下列条件①∠B+DAC=90°;②∠B=DAC;=AB2=BDBC . 其中一定能够判定ABC是直角三角形的有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A是半径为6cm的⊙O上的定点,动点PA出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s);

(1)当t=6s时,∠POA的度数是________;

(2)当t为多少时,∠POA=120°;

(3)如果点BOA延长线上的一点,且AB=AO,问t为多少时,POB为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AC=DC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB.

(1)直接写出∠D与∠MAC之间的数量关系;

(2)①如图1,猜想AB,BDBC之间的数量关系,并说明理由;

②如图2,直接写出AB,BDBC之间的数量关系;

(3)MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a 的值

解:设另一个因式是(2x+b),

根据题意,得2x2+x+a=(x+2)(2x+b),

展开,得2x2+x+a =2x2+(b+4)x+2b

所以,解得

所以,另一个因式是(2x3),a 的值是6.

请你仿照以上做法解答下题:已知二次三项式3x2 10x m 有一个因式是(x+4),求另一个因式以及m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CDAB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=ACF.

(1)CD=2, AF=3,求⊙O的周长;

(2)求证:直线BE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形纸片ABCD中,AB=2,A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cosEFG的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的直径AB2AMBN是它的两条切线,DEOE,交AMD,交BNC.设ADxBCy

(1)求证:AMBN

(2)y关于x的关系式;

(3)求四边形ABCD的面积S,并证明:S≥2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张圆形纸片,小芳进行了如下连续操作:

(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.

(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.

(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.

(4)连结AE、AF,如图(5)所示.

经过以上操作小芳得到了以下结论:

①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④

以上结论正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案