精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点OAB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E、F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=,BF=2,求⊙O的半径.

【答案】(1)线BC与⊙O的位置关系是相切,理由见解析;(2)2.

【解析】

(1)连接OD,证明ODAC,即可证得ODB=90°,从而证得BC是圆的切线;

(2)在直角三角形OBD中,设OF=OD=R,利用勾股定理列出关于R的方程,求出方程的解得到R的值,即为圆的半径.

解:(1)线BC与⊙O的位置关系是相切,

理由是:连接OD,

∵OA=OD,

∴∠OAD=∠ODA,

∵AD平分∠CAB,

∴∠OAD=∠CAD,

∴∠ODA=∠CAD,

∴OD∥AC,

∵∠C=90°,

∴∠ODB=90°,即OD⊥BC,

∵OD为半径,

∴线BC与⊙O的位置关系是相切;

(2)设⊙O的半径为R,

则OD=OF=R,

在Rt△BDO中,由勾股定理得:OB2=BD2+OD2

即(R+2)2=(2+R2

解得:R=2,

即⊙O的半径是2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知AC=DC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB.

(1)直接写出∠D与∠MAC之间的数量关系;

(2)①如图1,猜想AB,BDBC之间的数量关系,并说明理由;

②如图2,直接写出AB,BDBC之间的数量关系;

(3)MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的直径AB2AMBN是它的两条切线,DEOE,交AMD,交BNC.设ADxBCy

(1)求证:AMBN

(2)y关于x的关系式;

(3)求四边形ABCD的面积S,并证明:S≥2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡;

(1)求改造前坡顶与地面的距离BE的长;

(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)

【参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,点是对角线的中点,点上一点,连接,且,点中点,,连接,延长于点

1)若,求的长度;

2)若,求证

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,两条中线BE、CD相交于点O,则SADE:SCOE=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张圆形纸片,小芳进行了如下连续操作:

(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.

(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.

(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.

(4)连结AE、AF,如图(5)所示.

经过以上操作小芳得到了以下结论:

①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④

以上结论正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1234,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字123(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.

1)用树状图或列表法求出小颖参加比赛的概率;

2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】次函 y=kx+b与反 y=x0Am6B3n

1求一次函数的解析式;

2AOB的面积

查看答案和解析>>

同步练习册答案