【题目】如图,在中,,以斜边上的中线为直径作,与、分别交于点、,与的另一个交点为.过点作,垂足为.
(1)求证:是的切线;
(2)若,,求弦的长.
【答案】(1)见解析;(2).
【解析】
(1)连接,ND,可知∠CND=90°,再证,即可证,最后根据切线的定义求得答案;
(2)根据勾股定理和,,可知,设半径为,根据勾股定理可求出r值,过作于,则,可知四边形是矩形,从而可知OH,再次根据勾股定理即可求出DH,最后即可求出答案.
证明:(1)
连接,,
在中,为斜边中线,
∴,
∵是的直径.
∴,
∴,
∵等腰三线合一,
∴,
∵在中,为斜边的中点,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∴,
∵是的半径,
∴是的切线.
(2)∵在中,且,,
∴,
设半径为,
则,
∴,
在中,,即,
在中,,即,
∵在等腰中,,
∴,
∴,
解得:,
过作于,
则,
由(1)可知∠ONF=∠NFH=90°
∴四边形是矩形,
则,
在中,,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴的一个交点为,与轴的负半轴交于点.
(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点的坐标;
(2)点关于轴的对称点为点,当点在以为直径的半圆上时,求抛物线的解析式;
(3)在(2)的情况下,在抛物线上是否存在一点,使,,三条之中,其中一条是另两条所夹角的角平分线?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线的表达式为,线段AB的两个端点分别为A(1,2),B(3,2)
(1)若抛物线经过原点,求出的值;
(2)求抛物线顶点C的坐标(用含有m的代数式表示);
(3)若抛物线与线段AB恰有一个公共点,结合函数图象,求出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(0,6),点B(4,3),P是x轴上的一个动点.作OQ⊥AP,垂足为Q,则点Q到直线AB的距离的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.
(1)甲射击成绩的众数为 环,乙射击成绩的中位数为 环;
(2)计算两人射击成绩的方差;
(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场经营某种品牌的计算器,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是600个,而销售单价每上涨1元,就会少售出10个.
(1)不妨设该种品牌计算器的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y个和销售该品牌计算器获得利润w元,并把结果填写在表格中:
销售单价(元) | x(x>30) |
销售量y(个) |
|
销售计算器获得利润w(元) |
|
(2)在第(1)问的条件下,若计算器厂规定该品牌计算器销售单价不低于35元,且商场要完成不少于500个的销售任务,求:商场销售该品牌计算器获得最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.
(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;
(2)如图3,△ABC内接于⊙O,⊙O的半径为,AB=6,∠BAC=30°,求AC的长;
(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com