【题目】如图抛物线y=ax2+bx+c的图象经过(﹣1,0),对称轴x=1,则下列三个结论:①abc<0;②10a+3b+c>0;③am2+bm+a≥0.正确的结论为_____(填序号).
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,E是AB上一点,连接DE,过点A作AF⊥DE,垂足为F.⊙O经过点C、D、F,与AD相交于点G,且AB与⊙O相切,则AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为B(1,3),与轴的交点A在点 (2,0)和(3,0)之间.以下结论:
①;②;③;④≥;⑤若,且,
则.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)求该函数图象与x轴,y轴的交点坐标以及它的顶点坐标:
(2)根据(1)的结果在坐标系中利用描点法画出此抛物线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+bx+c的图象与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为C(﹣3,0).
(1)填空:b=_____,c=_____.
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,的两边分别与AB,BC交于点E,F,与对角线AC交于点G,H,已知,.
(1)如图1,当,时,
①求证:;
②求线段GH的长;
(2)如图2,当绕点D旋转时,线段AG,GH,HC的长度都在变化.设线段,,,试探究p与mn的等量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)
(1)求此二次函数的解析式及顶点坐标.
(2)设点P是该抛物线上的动点,当△ABP的面积等于△ABC面积的时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于,两点(在的左侧),且点坐标为.平行于轴的直线过点.
求一次函数与二次函数的解析式;
判断以线段为直径的圆与直线的位置关系,并给出证明;
把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于,两点,一次函数图象交轴于点.当为何值时,过,,三点的圆的面积最小?最小面积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com