分析 (1)根据直角三角形的性质得到BE=2CN=13,根据勾股定理得到BC=$\sqrt{B{E}^{2}-C{E}^{2}}$=5,即可得到结论;
(2)如图2,延长CN到F使FN=CN,连接BF,通过证明△CEN≌△BNF,得到CE=BF,∠F=∠ECN,推出∠CBF=∠DCA,证得△ACD≌△BCF,根据全等三角形的性质得到∠DAC=∠BCF,等量代换即可得到结论.
(3)结论不变.证明方法类似.
解答 (1)解:如图1中,![]()
∵∠ACB=90°,点N是线段BE的中点,
∴BE=2CN=13,
∵CE=5,
∴BC=$\sqrt{B{E}^{2}-C{E}^{2}}$=$\sqrt{1{3}^{2}-{5}^{2}}$=12,
∵CD=CE=5,
∴BD=BC-CD=12-5=7;
(2)如图2中,延长CN到F使FN=CN,连接BF,![]()
在△CEN与△BFN中,
$\left\{\begin{array}{l}{CN=FN}\\{∠CNE=∠BNF}\\{EN=BN}\end{array}\right.$,
∴△CEN≌△BNF,
∴CE=BF,∠F=∠ECN
∵∠CBF=180°-∠F-∠BCF,∠DCA=360°-∠DCE-∠ACB-∠BCE=180°-∠ECF-∠BCF,
∴∠CBF=∠DCA,
∵CE=CD,
∴BF=CD,
在△ACD与△BCF中,
$\left\{\begin{array}{l}{CD=BF}\\{∠ACD=∠FBC}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△BCF,
∴∠DAC=∠BCF,
∵∠BCF+∠ACH=90°,
∴∠CAH+∠ACH=90°,
∴∠AHC=90°,
∴CN⊥AD.
(3)结论仍然成立.如图3中,![]()
证明:延长CN到F使FN=CN,连接BF,延长AD交CF于H.
在△CEN与△BFN中,
$\left\{\begin{array}{l}{CN=FN}\\{∠CNE=∠BNF}\\{EN=BN}\end{array}\right.$,
∴△CEN≌△BNF,
∴CE=BF,∠F=∠ECN
∵∠CBF=180°-∠F-∠BCF=180°-∠FCE-∠BCF=180°-∠BCE=90°-∠ACE,∠DCA=90°-∠ACE,
∴∠CBF=∠DCA,
∵CE=CD,
∴BF=CD,
在△ACD与△BCF中,
$\left\{\begin{array}{l}{CD=BF}\\{∠ACD=∠FBC}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△BCF,
∴∠DAC=∠BCF,
∵∠BCF+∠ACH=90°,
∴∠CAH+∠ACH=90°,
∴∠AHC=90°,
∴CN⊥AD.
点评 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,三角形的面积公式,正确的作出辅助线是解题的关键,属于中考压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com