精英家教网 > 初中数学 > 题目详情

【题目】(1)计算:2﹣1+(π﹣3.14)0+sin60°﹣|﹣|

(2)如图,在△ABC中,AB=AC=10,sinC=,点D是BC上一点,且DC=AC.求BD的长.

【答案】(1) (2)6

【解析】

(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值即绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;
(2)过点AAE⊥BC于点E,根据等腰三角形的性质得出BE=CE,在Rt△ACE中根据AC=10,sin∠C=,得出AE=6,由勾股定理求出CE的值,再由BD=BC-BD=BC-AC即可得出结论.

(1)解:原式=+1+

=

(2)解:过点A作AE⊥BC于点E,

∵AB=AC,

∴BE=CE,

在Rt△ACE中,AC=10,sin∠C=

∴AE=6,

∴CE==8,

∴BD=2CE=16,

∴BD=BC﹣BD=BC﹣AC=6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知中, DAB边的中点,EAC边上一点,联结DE,过点DBC边于点F,联结EF

(1)如图1,当时,求EF的长;

(2)如图2,当点EAC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;

(3)如图3,联结CDEF于点Q,当是等腰三角形时,请直接写出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,ACB=90°ABC=60°BC=2cmDBC的中点,若动点E1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t6),连接DE,当BDE是直角三角形时,t的值为

A2 B2.53.5 C3.54.5 D23.54.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线经过点,且相交于另一点,抛物线与轴交于点,与轴交于另一点,过点的直线交抛物线于点,且轴,连接,当点在线段上移动时(不与重合),下列结论正确的是( )

A.B.

C.D.四边形的最大面积为13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD 中,对角线 AC BD 相交于点 O ,点 E F 分别为 OB OD 的中点,延长 AE G ,使 EG AE ,连接 CG

1)求证: ABE≌△CDF

2)当 AB AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加快城市群的建设与发展,在AB两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在AB两地的运行时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,O为坐标原点,四边形OABC为矩形,B(5,2),点DOA的中点,动点P在线段BC上以每秒2个单位长的速度由点CB 运动.设动点P的运动时间为t

(1)当t为何值时,四边形PODB是平行四边形?

(2)在直线CB上是否存在一点Q,使得ODQP四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由.

(3)在线段PB上有一点M,且PM=2.5,当P运动多少,四边形OAMP的周长最小值为多少,并画图标出点M的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=﹣x2+bx+cx轴交于点A﹣10),B30),与y轴交于点C.过点CCD∥x轴,交抛物线的对称轴于点D

1)求该抛物线的解析式;

2)若将该抛物线向下平移m个单位,使其顶点落在D点,求m的值.

查看答案和解析>>

同步练习册答案