【题目】猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.
拓展与延伸:
(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;
(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]
① ②
【答案】猜想与证明:猜想DM与ME的数量关系是:DM=ME,证明见解析;拓展与延伸:(1)DM=ME,DM⊥ME;(2)证明见解析
【解析】
猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.
(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,
(2)连接AC,AC和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,
解:猜想与证明:
猜想DM与ME的数量关系是:DM=ME.
证明:如图①,延长EM交AD于点H.
①
∵四边形ABCD、四边形ECGF都是矩形,
∴AD∥BG,EF∥BG,∠HDE=90°.
∴AD∥EF.
∴∠AHM=∠FEM.
又∵AM=FM,∠AMH=∠FME,
∴△AMH≌△FME.
∴HM=EM.
又∵∠HDE=90°,
∴DM=EH=ME;
(1)∵四边形ABCD和CEFG是正方形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
∵四边形ABCD和CEFG是正方形,
∴AD=CD,CE=EF,
∵△FME≌△AMH,
∴EF=AH,
∴DH=DE,
∴△DEH是等腰直角三角形,
又∵MH=ME,
故答案为:DM=ME,DM⊥ME;
(2)证明:如图②,连结AC.
②
∵四边形ABCD、四边形ECGF都是正方形,
∴∠DCA=∠DCE=∠CFE=45°,
∴点E在AC上.
∴∠AEF=∠FEC=90°.
又∵点M是AF的中点,
∴ME=AF.
∵∠ADC=90°,点M是AF的中点,
∴DM=AF.
∴DM=ME.
∵ME=AF=FM,DM=AF=FM,
∴∠DFM= (180°-∠DMF),∠MFE= (180°-∠FME),
∴∠DFM+∠MFE= (180°-∠DMF)+ (180°-∠FME)
=180°- (∠DMF+∠FME)
=180°-∠DME.
∵∠DFM+∠MFE=180°-∠CFE=180°-45°=135°,
∴180°-∠DME=135°.
∴∠DME=90°.
∴DM⊥ME.
科目:初中数学 来源: 题型:
【题目】我们知道,假分数可以化为整数与真分数的和的形式.例如:.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,…这样的分式是假分式;像 ,,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如: ’
.
(1)将分式化为整式与真分式的和的形式;
(2)如果分式的值为整数,求x的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5-3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离,一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.
请根据绝对值的意义并结合数轴解答下列问题:
(1)数轴上表示2和3的两点之间的距离是 ;数轴上表示数a的点与表示﹣2的点之间的距离表示为 ;
(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是 ;
(3)数轴上有一个点表示数a,则|a+1|+|a-3|+|a+8|的最小值为 ;
(4)a、b、c、d在数轴上的位置如下图所示,若|a-d|=12,|b-d|=7,|a-c|=9,则|b-c|等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面三行数
①2,-4,8,-16,32,-64,......;
②4,-2,10,-14,34,-62,......;
③-1,2,-4,8,-16,32,......;
取每一行的第n个数,依次记为a,b,c. 如上图,当n=2时,x=-4,y=-2,z=2.
(1)当n=7时,请直接写出x、y、z的值,并求这三个数中最大的数与最小的数的差;
(2)已知n为偶数,且x、y、z这三个数中最大的数与最小的数的差为384,求n的值;
(3)若m=x+y+z,则x、y、z这三个数中最大的数与最小的数的差为______(用含m的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论
(2)求BC的长
(3)求⊙O的半径OF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com