精英家教网 > 初中数学 > 题目详情

【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)求证:2CD2=AD2+DB2

【答案】
(1)

证明:∵△ABC和△ECD都是等腰直角三角形,

∴AC=BC,CD=CE,

∵∠ACB=∠DCE=90°,

∴∠ACE+∠ACD=∠BCD+∠ACD,

∴∠ACE=∠BCD,

在△ACE和△BCD中,

∴△AEC≌△BDC(SAS)


(2)

证明:∵△ACB是等腰直角三角形,

∴∠B=∠BAC=45度.

∵△ACE≌△BCD,

∴∠B=∠CAE=45°

∴∠DAE=∠CAE+∠BAC=45°+45°=90°,

∴AD2+AE2=DE2

由(1)知AE=DB,

∴AD2+DB2=DE2,即2CD2=AD2+DB2


【解析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD;
    (2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2 , 即2CD2=AD2+DB2 . 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有如下一串二次根式:

(1)求①④的值;

(2)仿照①写出第⑤个二次根式;

(3)仿照①写出第n个二次根式并化简

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是(  )

A. 25° B. 30° C. 35° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】莫小贝在图1中画出△ABC其顶点A,B,C都是格点同时构造正方形BDEF,使它的顶点都在格点上且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC 的面积.

(1)莫小贝所画的△ABC 的三边长分别是AB=_______,BC=______,AC=______;△ABC 的面积为________.

(2)已知△ABC ,AB=,BC=,AC=请你根据莫小贝的思路在图2中画出△ABC并直接写出△ABC的面积_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形OABC的边OA,OC分别与坐标轴重合并且点B的坐标为.将该矩形沿OB折叠使得点A落在点E,OEBC的交点为D.

(1)求证△OBD为等腰三角形

(2)求点E的坐标

(3)坐标平面内是否存在一点F,使得以点B,E,F,O为顶点的四边形是平行四边形若存在请直接写出点F的坐标若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)9x-5=2x+23;

(2)2x+3(2x-1)=16-(x+1);

(3)

(4) [ (x-)-8]=x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发现与探索.

(1)根据小明的解答(图1)将下列各式因式分解

a2-12a+20

a-1)2-8(a-1)+7

a2-6ab+5b2

(2)根据小丽的思考(图2)解决下列问题.

①说明:代数式a2-12a+20的最小值为-16.

②请仿照小丽的思考解释代数式-(a+1)2+8的最大值为8,并求代数式-a2+12a-8的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=2x+3与y轴交于A点,与反比例函数y= (x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).
(1)求反比例函数的解析式;
(2)点D(a,1)是反比例函数y= (x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】试比较下列两个方程的异同, +2x-3=0, +2x+3=0.

查看答案和解析>>

同步练习册答案