精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB,CD相交于点O,OE是∠COB的平分线,∠FOE=90°,若∠AOD=70°.

(1)求∠BOE的度数;

(2)OF是∠AOC的平分线吗?请说明理由.

【答案】(1)35°;(2)OF是∠AOC的平分线,理由见解析

【解析】

(1)根据角平分线的性质解答;

(2)根据邻补角的性质、角平分线的定义解答.

(1) 因为∠BOC和∠AOD是对顶角,所以∠BOC=AOD=70°,因为OE是∠COB的平分线,所以∠BOE=BOC=35°

(2) OF是∠AOC的平分线,理由:因为∠AOD=70°,COE=BOE=35°,所以∠AOC=180°-70°=110°,又∠FOC=90°-COE=55°,所以∠AOF=AOC-FOC=110°-55°=55°,所以∠FOC=AOF,即OF是∠AOC的平分线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,AC=20,点D与点A关于y轴对称,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.

(1)直接写出BC的长是 , 点D的坐标是
(2)证明:△AEF与△DCE相似;
(3)当△EFC为等腰三角形时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图 1,△ABC 中,∠ACB=90°,AC=BC,直线 L 过点C,点 A,B 在直线 L 同侧,BD⊥L, AE⊥L,垂足分别为D,E

求证:△AEC≌△CDB

(2)类比探究:如图 2,RtABC 中,∠ACB=90°,AC=4,将斜边 AB 绕点 A 逆时针旋转 90° AB’, 连接B’C,求AB’C 的面积

(3)拓展提升:如图 3,等边EBC ,EC=BC=3cm,点 O BC 上且 OC=2cm,动点 P 从点 E 沿射线EC 1cm/s 速度运动,连接 OP,将线段 OP 绕点O 逆时针旋转 120°得到线段 OF,设点 P 运动的时间为t 秒。

t= 时,OF∥ED

若要使点F 恰好落在射线EB 上,求点P 运动的时间t

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论: ①ac<0;
②4a﹣2b+c>0;
③抛物线与x轴的另一个交点是(4,0);
④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2 . 其中正确的个数为(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点PAOB的边OB上的一点,过点POB的垂线,交OA于点C

(1) 过点COB的平行线CD

(2) 过点POA的垂线,垂足为H

(3) 线段PH的长度是点P 的距离,线段 的长度是点C到直线OB的距离.线段PCPHOC这三条线段大小关系是 (用“<”号连接).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备购置甲乙两种羽毛球拍若干,已知甲种球拍的单价比乙种球拍的单价多40元,且购买4副甲种球拍与购买6副乙种球拍的费用相同.
(1)两种球拍的单价各是多少元?
(2)若学校准备购买100副甲乙两种羽毛球拍,且购买甲种球拍的费用不少于乙种球拍费用的3倍,问购买多少副甲种球拍总费用最低?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为( )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)

A.10.61
B.10.52
C.9.87
D.9.37

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队修建一条长1200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.

1)求这个工程队原计划每天修道路多少米?

2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2 x+ 与x轴交于A,B两点(A点在B点的左侧),与y轴交于点C,已知点D(0,﹣ ).

(1)求直线AC的解析式;
(2)如图1,P为直线AC上方抛物线上的一动点,当△PBD面积最大时,过P作PQ⊥x轴于点Q,M为抛物线对称轴上的一动点,过M作y轴的垂线,垂足为点N,连接PM,NQ,求PM+MN+NQ的最小值;
(3)在(2)问的条件下,将得到的△PBQ沿PB翻折得到△PBQ′,将△BPQ′沿直线BD平移,记平移中的△PBQ′为△P′B′Q″,在平移过程中,设直线P′B′与x轴交于点E.则是否存在这样的点E,使得△B′EQ″为等腰三角形?若存在,求此时OE的长.

查看答案和解析>>

同步练习册答案