【题目】某宾馆有若干间住房,住宿记录提供了如下信息:
(1)4月17日全部住满,一天住宿费收入为12000元;
(2)4月18日有20间房空着,一天住宿费收入为9600元;
(3)该宾馆每间房每天收费标准相同.
①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?
②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入﹣支出费用)
③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.
【答案】①100间,120元;②160元或170元,11000元;③165元, 11012.5元.
【解析】
①设每间住房每天收费x元,由信息(1)可知该宾馆共有住房间,由信息(2)可知该宾馆有顾客居住的房间
间,根据该宾馆的住房间数不变列出分式方程,求解即可;
②根据利润的计算方法,设每间房的房价为y元,分别表示每间利润和住房间数及支出费用,根据该宾馆一天的利润为11000元得方程求解;
③设房价定为每间a元时,该宾馆一天的利润为w元,根据利润的计算方法,列出w关于a的函数关系式,再根据函数的性质即可求解.
解:①设每间住房每天收费x元,根据题意,得
,
解得x=120,
经经验,x=120是原方程的根.
12000÷120=100.
答:该宾馆共有100间住房,每间住房每天收费120元;
②设每间房的房价为y元,根据题意,得
(y﹣20)(100﹣×5)﹣10×
×5=11000,
解得:y1=160,y2=170.
答:房价定为160元或170元时,该宾馆一天的利润为11000元.
③设房价定为每间a元时,该宾馆一天的利润为w元,根据题意,得
w=(a﹣20)(100﹣×5)﹣10×
×5
=﹣a2+165a﹣2600
=﹣(a﹣165)2+11012.5,
∴当房价定为165元时,该宾馆一天的利润最大,为11012.5元.
科目:初中数学 来源: 题型:
【题目】方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:
(1)请按要求对△OAB作变换:以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△OA′B′.
(2)写出点A′的坐标;
(3)求△OA′B'的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.
(1)请你用画树状图或列表的方法,求出这两数和为6的概率.
(2)你认为这个游戏规则对双方公平吗?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上一点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.
(1)求证:四边形CDEF是菱形.
(2)当∠ACB= 度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是( )
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探索发现)如图1,△ABC中,点D,E,F分别在边BC,AC,AB上,且AD,BE,CF相交于同一点O.用”S”表示三角形的面积,有S△ABD:S△ACD=BD:CD,这一结论可通过以下推理得到:过点B作BM⊥AD,交AD延长线于点M,过点C作CN⊥AD于点N,可得S△ABD:S△ACD=,又可证△BDM~△CDN,∴BM:CN=BD:CD,∴S△ABD:S△ACD=BD:CD.由此可得S△BAO:S△BCO= ;S△CAO:S△CBO= ;若D,E,F分别是BC,AC,AB的中点,则S△BFO:S△ABC= .
(灵活运用)如图2,正方形ABCD中,点E,F分别在边AD,CD上,连接AF,BE和CE,AF分别交BE,CE于点G,M.
(1)若AE=DF.判断AF与BE的位置关系与数量关系,并说明理由;
(2)若点E,F分别是边AD,CD的中点,且AB=4.则四边形EMFD的面积是 .
(拓展应用)如图3,正方形ABCD中,AB=4,对角线AC,BD相交于点O.点F是边CD的中点.AF与BD相交于点P,BG⊥AF于点G,连接OG,请直接写出S△OGP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是边长为
的等边三角形,边
在射线
上,且
,点
从点
出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将
绕点C逆时针方向旋转60°得到
,连接DE.
(1)如图1,求证:是等边三角形;
(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.
(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面直角坐标系中,设一次函数y1=mx+n(m,n为常数,且m≠0,m≠-n)与反比例函数y2=.
(1)若y1与y2的图象有交点(1,5),且n=4m,当y1≥5时,y2的取值范围;
(2)若y1与y2的图象有且只有一个交点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com