【题目】已知二次函数(为常数).
(1)求证:不论为何值,该二次函数的图像与轴总有公共点.
(2)求证:不论为何值,该二次函数的图像的顶点都在函数的图像上.
(3)已知点、,线段与函数的图像有公共点,则的取值范围是__________.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)计算判别式的值得到△≥0,从而根据判别式的意义得到结论;
(2)利用配方法得到二次函数y=x2-2mx+2m-1的顶点坐标为(m,-(m-1)2),然后根据二次函数图象上点的坐标特征进行判断;
(3)先计算出抛物线y=-(x-1)2与直线y=-1的交点的横坐标,然后结合图象得到a+2≥0且a≤2.
(1)令,则.
∵,,,
∴.
∵,
∴.
∴一元二次方程有实数根.
故不论取何值,函数与轴总有公共点.
(2)∵.
∴该函数的顶点坐标为.
把代入,得.
∴不论为何值,该二次函数的顶点坐标都在函数上.
(3)当y=-1时,y=-(x-1)2=-1,解得x1=0,x2=2,
当a+2≥0且a≤2时,线段AB与函数y=-(x-1)2的图象有公共点,
所以a的范围为-2≤a≤2.
故答案为.
科目:初中数学 来源: 题型:
【题目】在图(1)中,在中,,垂足为点,点从点出发,以的速度沿射线运动,当点与点重合时,运动停止.过点作,垂足为点,将线段绕点顺时针旋转,点在射线上的对应点为点,连接.若与的重叠部分面积为,点的运动时间为,关于的函数图象如图(2)所示(其中,,时,函数解析式不同).
(1)求的长;
(2)求关于的函数关系式,并写出自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
如图,已知抛物线y=ax2﹣3x+c与y轴交于点A(0,﹣4),与x轴交于点B(4,0),点P是线段AB下方抛物线上的一个动点.
(1)求这条抛物线的表达式及其顶点的坐标;
(2)当点P移动到抛物线的什么位置时,∠PAB=90°求出此时点P的坐标;
(3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P的横坐标为t,△PAB的面积为S,求S关于t的函数表达式,并求t为何值时S有最大值,最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形 ABCD 中,E 为 BC 边中点.
(Ⅰ)已知:如图,若 AE 平分∠BAD,∠AED=90°,点 F 为 AD 上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如图,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,点 F,G 均为 AD上的点,AF=AB,GD=CD.求证:(1)△GEF 为等边三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】横、纵坐标均为整数的点称为格点,如图,的三个顶点,,均为格点,上的点也为格点,用无刻度的直尺作图:
(1)将线段绕点顺时针旋转90°,得到线段,写出格点的坐标;
(2)将线段平移至线段,使点与点重合,直接写出格点的坐标;
(3)画出线段关于对称的线段,保留作图痕迹.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x。
(1)求证:△PFA∽△ABE;
(2)若以P,F,E为顶点的三角形也与△ABE相似,试求x的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC的边AB,AC的外侧分别作等边△ABD和等边△ACE,连接DC,BE.
(1)求证:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于点B,请求出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明研究了这样一道几何题:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,请问边上的中线与的数量关系是什么?以下是他的研究过程:
特例验证:(1)①如图2,当为等边三角形时,猜想与的数量关系为_______;②如图3,当,时,则长为________.
猜想论证:(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
拓展应用:(3)如图4,在四边形,,,,,,在四边形内部是否存在点,使与之间满足小明探究的问题中的边角关系?若存在,请画出点的位置(保留作图痕迹,不需要说明)并直接写出的边上的中线的长度;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com