精英家教网 > 初中数学 > 题目详情

【题目】横、纵坐标均为整数的点称为格点,如图,的三个顶点均为格点,上的点也为格点,用无刻度的直尺作图:

1)将线段绕点顺时针旋转90°,得到线段,写出格点的坐标;

2)将线段平移至线段,使点与点重合,直接写出格点的坐标;

3)画出线段关于对称的线段,保留作图痕迹.

【答案】1)作图见解析,;(2)作图见解析,;(3)作图见解析

【解析】

1)根据旋转的性质作出线段,进而得出点E的坐标;

2)根据平行的性质作出线段CM,进而得出点M的坐标;

3)取点,连接于点,连接即可.

解:(1)如图,线段AE即为所求,

2)如图,线段CM即为所求,

3)取点,连接于点,连接,则即为所求.

理由如下:

交于点,易证

四边形为平行四边形,

垂直平分

线段关于对称的线段为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(BEC在一条直线上),求塔AB的高度.(结果精确到0.01米)

参考数据:sin32°≈0.5299cos32°≈0.8480tan32°≈0.6249

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,上一点,连接,过于点,过点,其中的延长线于点

1)求证:的切线.

2)如图,点上,且满足,连接并延长交的延长线于点

①试探究线段之间满足的数量关系.

②若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交

于点A(1,4)、点B(-4,n).

(1)求一次函数和反比例函数的解析式;

(2)求△OAB的面积;

(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数为常数).

1)求证:不论为何值,该二次函数的图像与轴总有公共点.

2)求证:不论为何值,该二次函数的图像的顶点都在函数的图像上.

3)已知点,线段与函数的图像有公共点,则的取值范围是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,点E在对角线AC上,点F在边CD上,连接BEEF.若∠EFC90°+CBEBE7EF10.则点DEF的距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若要在宽AD20米的城南大道两边安装路灯,路灯的灯臂BC2米,且与灯柱AB120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴为直线,与轴的一个交点在之间,其部分图象如图所示.则下列结论:①;②;③;④为实数);⑤点是该抛物线上的点,则,其中,正确结论的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AEBD于点E,CFBD于点F,连接AF,CE,若DE=BF,则下列结论:

①CF=AE;②OE=OF;③图中共有四对全等三角形;④四边形ABCD是平行四边形;其中正确结论的是_____________________

查看答案和解析>>

同步练习册答案