精英家教网 > 初中数学 > 题目详情

比较下列各数的大小: ; ____________________

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,△ABC中,∠A=60°.
(1)试求作一点P,使得点P到B、C两点的距离相等,并且到AC、BC两边的距离也相等(尺规作图,不写作法,保留作图痕迹).
(2)在(1)的条件下,若∠ABP=15°,求∠BPC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若定义a?b=3a-(a-b),其中符号“?”是我们规定的一种运算符号.例如:4?5=3×4-(4-5)=13.求:(-3)?(-2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解分式方程:
(1)$\frac{x-1}{x-3}$+$\frac{2}{3-x}$=-4.               
(2)$\frac{1}{x+3}$-$\frac{2}{3-x}$=$\frac{12}{{x}^{2}-9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小明在探究问题“正方形ABCD内一点E到A、B、C三点的距离之和的最小值”时,由于EA、EB、EC比较分散,不便解决.于是将△ABE绕点B逆时针旋转60°得△A′BE′,连接EE′.
(1)△EBE′是等边三角形;
(2)若正方形ABCD的边长为2,则AE+BE+CE的最小值是$\sqrt{6}$+$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图:△ABC中,DE∥BC,已知AE=6,AD:DB=3:4,则AC的长为(  )
A.4.5B.8C.14D.10.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=-x2+3x-2的“旋转函数”.
小明是这样思考的:由函数y=-x2+4x-3可知,a1=-1,b1=4,c1=-3,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)直接写出函数y=-x2+4x-3的“旋转函数”;
(2)若函数y=-x2+$\frac{3}{5}$mx-3与y=x2-3nx+n互为“旋转函数”,求$(\frac{4}{15}m+n{)^{2015}}$的值;
(3)设点A(m,n)在抛物线上L:y=ax2+bx+c的图象上,证明:点A关于原点的对称点在抛物线L的“旋转函数”上.
(4)已知函数y=-$\frac{1}{2}$(x+1)(x-4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=-$\frac{1}{2}$(x+1)(x-4)互为“旋转函数”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,AB、EF的中点均为O,连接BF,CD,CO.
(1)求证:CD=BF;
(2)如图2,当△DEF绕O点顺时针旋转的过程中,探究BF与CD间的数量关系和位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图所示,已知△ABC周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个对角线三边中点构成第三个三角形,依此类推,第2003个三角形周长为$\frac{1}{{{2^{2002}}}}$.

查看答案和解析>>

同步练习册答案