如图,在△ABC中,∠C=90°,AC=BC=2,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CEDF的周长不变;③点C到线段EF的最大距离为1.其中正确的结论有 .(填写所有正确结论的序号)
①③【考点】全等三角形的判定与性质;等腰直角三角形.
【分析】①作常规辅助线连接CD,由SAS定理可证△CDF和△ADE全等,从而可证∠EDF=90°,DE=DF.所以△DFE是等腰直角三角形;
②当E、F分别为AC、BC中点时,EF取最小值,得到EF的值是变化的,DE和DF也是变化的,于是四边形CEDF的周长变,不正确,
③△DEF是等腰直角三角形, DE=EF,当DF与BC垂直,即DF最小时,FE取最小值2,此时点C到线段EF的最大距离是1.
【解答】解:①连接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵AE=CF,
∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.
∴①正确;
②当E、F分别为AC、BC中点时,EF取最小值,
∴EF的值是变化的,
∴DE和DF也是变化的,
∴四边形CEDF的周长变,
∴②不正确,
③△DEF是等腰直角三角形, DE=EF,
当EF∥AB时,∵AE=CF,
∴E,F分别是AC,BC的中点,故EF是△ABC的中位线,
∴EF取最小值=2,
∵CE=CF=,
∴此时点C到线段EF的最大距离=EF=1,
∴③正确,
故答案为:①③
【点评】此题主要考查了全等三角形的判定与性质以及正方形、等腰三角形、直角三角形性质等知识,找到EF∥BC时取最小值是解题关键.
科目:初中数学 来源: 题型:
如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.
你添加的条件是: .
证明: .
查看答案和解析>>
科目:初中数学 来源: 题型:
下列事件:①367人中一定有两个人的生日相同;②抛掷两枚质地均匀的骰子,向上一面的点数之和大于2;③“彩票中奖的概率是1%”表示买1000张彩票必有10张会中奖;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com