【题目】某电器商场销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是该型号电风扇近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
求A、B两种型号的电风扇的销售单价;
若该商场准备用不多于5400元的金额再采购这两种型号的电风扇共30台,假设售价不变,那么商场应采用哪种采购方案,才能使得当销售完这些风扇后,商场获利最多?最多可获利多少元?
【答案】A种型号电风扇销售单价为250元台,B种型号电风扇销售单价为210元台;商场应采用的进货方案为:购进A种型号风扇10台,B种型号风扇20台,可获利最多,最多可获利1200元.
【解析】
设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
设采购A种型号电风扇a台,则采购B种型号电风扇台,根据金额不多余5400元,求出a的范围,然后再列出W与a的函数关系式,最后依据一次函数的性质解答即可.
解:设A种型号电风扇销售单价为x元台,B种型号电风扇销售单价为y元台,
由已知得,解得:
答:A种型号电风扇销售单价为250元台,B种型号电风扇销售单价为210元台.
解:设当购进A种型号电风扇a台时,所获得的利润为w元,由题意得:
,
解得:.
,
又,
的值增大时,w的值也增大
当时,w取得最大值,此时.
故商场应采用的进货方案为:购进A种型号风扇10台,B种型号风扇20台,可获利最多,最多可获利1200元.
科目:初中数学 来源: 题型:
【题目】如图,已知AM∥BN,∠B=40°,点P是BN上一动点(与点B不重合).AC、AD分别平分∠BAP和∠PAM,交射线BN于点C、D.
(1)求∠CAD的度数;
(2)当点P运动到当∠ACB=∠BAD时,求∠BAC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价1元,那么每月就可以多售出5个.
降价前销售这种学习机每月的利润是多少元?
经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?
在的销售中,销量可好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:
放水时间(分) | 1 | 2 | 3 | 4 | … |
水池中水量(m3) | 38 | 36 | 34 | 32 | … |
下列结论中正确的是( )
A. y随t的增加而增大
B. 放水时间为15分钟时,水池中水量为8m3
C. 每分钟的放水量是2m3
D. y与t之间的关系式为y=40t
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )
A. 第24天的销售量为200件 B. 第10天销售一件产品的利润是15元
C. 第12天与第30天这两天的日销售利润相等 D. 第30天的日销售利润是750元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
销售额/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,与之间的关系式为______.
(4)当橘子的销售额是100元时,共卖出多少千克橘子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在△ABC中,∠ACB=900,AC=12,BC=5,AM=AC,BN=BC,求MN的长.
(2)如图,在△ABC中,∠ACB=900,AM=AC,BN=BC
当∠A=300时,求∠MCN的度数。
当∠A的度数变化时,∠MCN的度数是否变化,如有变化,请说明理由;如不变,求∠MCN的度数.
(3)如图,在△ABC中,∠ACB=90,AC=BC,点M、N在边AB上,且∠MCN=450,试猜想线段AN、BM、MN之间的数学关系,直接写出你的结论(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与思考:
整式乘法与因式分解是方向相反的变形,由 ,
可得 .
利用这个式子可以将某些二次项系数是1的二次三项式分解因式.
例如:将式子分解因式.
这个式子的常数项,一次项系,
所以.
解: .
上述分解因式的过程,也可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图).
请仿照上面的方法,解答下列问题:
(1)分解因式:=___________________;
(2)若可分解为两个一次因式的积,则整数P的所有可能值是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com