【题目】(1)如图,在△ABC中,∠ACB=900,AC=12,BC=5,AM=AC,BN=BC,求MN的长.
(2)如图,在△ABC中,∠ACB=900,AM=AC,BN=BC
当∠A=300时,求∠MCN的度数。
当∠A的度数变化时,∠MCN的度数是否变化,如有变化,请说明理由;如不变,求∠MCN的度数.
(3)如图,在△ABC中,∠ACB=90,AC=BC,点M、N在边AB上,且∠MCN=450,试猜想线段AN、BM、MN之间的数学关系,直接写出你的结论(不要求证明).
【答案】(1)MN=4 ;(2) ① ∠MCN=45°;②∠MCN=45°;(3)AN2+BM2=MN2
【解析】
(1)根据勾股定理求出AB的长即可解答;
(2)①由题知∠ACB=90°,AM=AC,BN=BC,∠A=30°,求出∠AMC和∠CNB即可求出∠MCN的度数,②分别用∠A表示出∠AMC和∠CNB,即可得出∠MCN的度数;
(3)作△CAN关于CN所在直线的轴对称三角形CPN,连接MP,可证明∠MCP=∠MCB,即可证明△BCM≌△PCM,则MP=BM,∠MPC=∠B=45°,∠MPN=∠MPC+∠NPC=90°,即可得出结论.
解:(1)在Rt△ABC中,根据勾股定理,AB=,
又∵AC=12,BC=5,AM=AC,BN=BC,
∴AM=12,BN=5,
∴MN=AM+BN-AB=12+5-13=4;
(2)①∵∠A=30°,AC=AM,
∴∠AMC=(180°-30°)=75°,
∵∠B=60°,BC=BN,
∴∠CNB=(180°-60°)=60°,
∴∠MCN=180°-60°-75°=45°;
②当∠A的度数变化时,∠MCN的度数不变化,理由如下:
∵∠AMC=(180°-∠A),∠BNC=(180°-∠B),
∴∠MCN=180°-∠AMC-∠BNC=(∠A+∠B)=45°;
(3)AN2+BM2=MN2理由如下:
如图,作△CAN关于CN所在直线的轴对称△CPN,连接MP,
则CP=CA,PN=AN,∠ACN=∠PCN,∠CPN=∠A=45°,
∵AC=BC,
∴CP=CB,
∵∠ACB=90°,∠MCN=45°,
∴∠MCP+∠NCP=45°,∠ACN+∠BCM=45°,
∴∠MCP=∠MCB,
在△BCM和△PCM中,
∴△BCM≌△PCM(SAS),
∴MP=MB,∠MPC=∠B=45°,
∴∠MPN=∠MPC+∠NPC=90°,
∴在Rt△PMN中PN2+PM2=MN2即AN2+BM2=MN2.
科目:初中数学 来源: 题型:
【题目】如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.
(1)直线AB与直线CD是否平行,说明你的理由;
(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.
①当点G在点F的右侧时,若β=60°,求α的度数;
②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电器商场销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是该型号电风扇近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
求A、B两种型号的电风扇的销售单价;
若该商场准备用不多于5400元的金额再采购这两种型号的电风扇共30台,假设售价不变,那么商场应采用哪种采购方案,才能使得当销售完这些风扇后,商场获利最多?最多可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系中,A(m,0)、B(0,n),m、n满足(m-n)2+|m-|=0.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度数;
(2)设AB=4,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;
(3)设AB=4,若∠OPD=45°,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在Rt△ABC中,∠C=90°,AC=BC,BE平分∠ABC交AC于点E,点D在BE的延长线上,AD⊥BE。
(1)求证:∠DAE+∠ABE=45°
(2)若BE=6,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x满足(x-4) (x-9)=6,求(x-4)2+(x-9)2的值.
解:设x-4=a,x-9=b,则(x-4)(x-9)=ab=6,a-b=(x-4)-(x-9)=5,
∴(x-4)2+(x-9)2=a2+b2=(a-b)2+2ab=52+2×6=37
请仿照上面的方法求解下面问题:
(1)若x满足(x-2)(x-5)=10,求(x-2)2 + (x-5)2的值
(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是15,分别以MF、DF作正方形,求阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com