精英家教网 > 初中数学 > 题目详情
6.已知,如图,AC=BC,CD∥BE,且CD=BE.
试说明:△ACD≌△CBE.

分析 根据两直线平行,同位角相等,求出∠ACD=∠B,然后利用SAS即可证明△ACD≌△CBE.

解答 证明:∵CD∥BE(已知),
∴∠ACD=∠B(两直线平行,同位角相等).
在△ACD和△CBE中,
$\left\{\begin{array}{l}{AC=CB}\\{∠ACD=∠CBE}\\{CD=BE}\end{array}\right.$,
∴△ACD≌△CBE(SAS).

点评 本题主要考查了全等三角形的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,等边△ABC的边长为10,D为AC上任意一点,延长AB至点E,使BE=CD,连接DE交BC于点P.
(1)求证:DP=PE;
(2)若D为AC的中点,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)(-2)2×7-(-3)×6-|-5|
(2)-14-(1-0.5)×$\frac{1}{3}$×[2-(-3)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知x=2$\sqrt{3}$-3,求x2-(2$\sqrt{3}$+3)x-5的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知A=3x2y-2xy2+xy,B是多项式,小明在计算2A-B时,误将其按2A+B计算,得C=4x2y-xy2+3xy.
(1)试确定B的表达式;
(2)求2A-B的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算:$\frac{{x}^{2}+2x-4}{x-2}$+$\frac{{x}^{2}}{2-x}$
(2)先化简,再求值:$\frac{a-2}{{a}^{2}-1}$÷(a-1-$\frac{2a-1}{a+1}$),其中a=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,对角线AC与BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F,若AB=6,BC=10,AE=2,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:4x2y-[6xy-2(4xy-2)-x2y]+1,其中x=-$\frac{1}{2}$,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,△ACB和△ECD都是等腰直角三角形,CA=CA,CE=CD,△ACB的顶点A在△ECD的斜边DE上,求证:AE2+AD2=2AC2.(提示:连接BD)

查看答案和解析>>

同步练习册答案