精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=ACDBC边的中点,AE∥BC

1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)

2)在(1)的条件下,若AD=2,求DF的长.

【答案】1)作图见解析;(22

【解析】

试题

(1)尺规作图,作已知角的平分线;

(2)由“角平分线+平行线等腰三角形,这个基本图形可得到AD=AFDAF=90°,则由勾股定理即可得到DF的长.

试题解析:

1)如图所示:

(2)∵AB=ACDBC边的中点,

ADBC ADC=90°,

DF平分ADC

∴∠ADF=45°,

AEBC

∴∠DAF=∠ADC=90°,

∴△ADF为等腰直角三角形,

AD=2,

DF=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC4ABCDBD6,点ED点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿CBC作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.

1)试证明:ADBC

2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我校图书馆大楼工程在招标时,接到甲乙两个工程队的投标书,每施工一个月,需付甲工程队工程款16万元,付乙工程队12万元。工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:

1)甲队单独完成此项工程刚好如期完工;

2)乙队单独完成此项工程要比规定工期多用3个月;

3)若甲乙两队合作2个月,剩下的工程由乙队独做也正好如期完工。

你觉得哪一种施工方案最节省工程款,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点Ax轴上,△ABO是直角三角形,∠ABO=90°,点B的坐标为(﹣12),将△ABO绕原点O顺时针旋转90°得到△A1B1O,则过A1B两点的直线解析式为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二: 同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)

(1)若顾客选择方式一,则享受 9 折优惠的概率为_______;

(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1:在四边形ABCD中,ABADBAD120°BADC90°EF分别是BCCD上的点.且∠EAF60°.探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G,使DGBE.连结AG先证明ABE≌△ADG,再证明AEF≌△AGF,可得出结论,他的结论应是   

探索延伸:

如图2,若在四边形ABCD中,ABADBD180°EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知关于x的方程2x2﹣mx﹣m2=0有一个根是1,求m的值;

(2)已知关于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一个根是0,求另一个根和m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)求AOB的面积;

(3)观察图象,直接写出不等式kx+b﹣>0的解集.

查看答案和解析>>

同步练习册答案