精英家教网 > 初中数学 > 题目详情

【题目】如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.

(1)填空:与∠AOE互补的角是
(2)若∠AOD=36°,求∠DOE的度数;
(3)当∠AOD=x°时,请直接写出∠DOE的度数.

【答案】
(1)∠BOE、∠COE
(2)解:∵OD、OE分别平分∠AOC、∠BOC,
∴∠COD=∠AOD=36°,∠COE=∠BOE= ∠BOC,
∴∠AOC=2×36°=72°,
∴∠BOC=180°﹣72°=108°,
∴∠COE= ∠BOC=54°,
∴∠DOE=∠COD+∠COE=90°
(3)解:当∠AOD=x°时,∠DOE=90°
【解析】解:(1)∵OE平分∠BOC,
∴∠BOE=∠COE;
∵∠AOE+∠BOE=180°,
∴∠AOE+∠COE=180°,
∴与∠AOE互补的角是∠BOE、∠COE;
故答案为∠BOE、∠COE;
(1)根据补角的定义知:与∠AOE互补的角有∠BOE、∠COE;(2)根据∠DOE的构成∠DOE=∠COD+∠COE可求∠DOE的度数;(3)方法同(2)。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙、丙、丁四位选手各10次射击的平均成绩都是9.2环,其中甲的成绩的方差为0.015, 乙的成绩的方差为0.035,的成绩的方差为0.025,的成绩的方差为0.027,由此可知

A)甲的成绩最稳定 (B)乙的成绩最稳定

C)丙的成绩最稳定 (D)丁的成绩最稳定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB=5cm,点C为直线AB上一点,且BC=3cm,则线段AC的长是(  )
A.2cm
B.8cm
C.9cm
D.2cm或8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===

思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===

思路三 在顶角为30°的等腰三角形中,作腰上的高也可以…

思路四

请解决下列问题(上述思路仅供参考).

(1)类比:求出tan75°的值;

(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;

(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(-3×103)×(2×102)=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4)
(1)求B点坐标;
(2)如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°连OD,求∠AOD的度数;
(3)如图3,过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式AM=FM+OF是否成立?若成立,请证明:若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,BC与CF的位置关系为:

BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=,CD=BC,请求出GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=﹣2x12+3的图象的顶点坐标是(  )

A. 13B. (﹣13C. 1,﹣3D. (﹣1,﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a<1,则|a-1|=

查看答案和解析>>

同步练习册答案