精英家教网 > 初中数学 > 题目详情

【题目】正方形ABCD的边AB在直线MN上,OACBD的交点,过OOEMN于点E

(1)如图1,线段ABOE之间的数量关系为 .(请直接填结论)

(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转(0<<90°),过点BBFMN于点F

① 如图2,当点OB两点均在直线MN右侧时,试猜想线段AFBFOE之间存在怎样的数量关系?请说明理由.

② 如图3,当点OB两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.

③ 当正方形ABCD绕点A旋转到如图4的位置时,线段AFBFOE之间的数量关系为 .(请直接填结论)

【答案】(1)AB=2OE;(2)①AF+BF=2OE, ②AF-BF=2OE, ③BF-AF=2OE,详见解析.

【解析】

(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;

(2)图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;

(3)图3,作OG⊥BF于G,可得四边形EFGO是矩形,根据矩形的对边相等可得EF=GO,GF=EO,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠BOG,然后利用“角角边”证明△AOE和△BOG全等,根据全等三角形对应边相等可得OG=OE,AE=BG,再根据BF-BG=GF,整理即可得证.

(1)AB=2OE

(2)①AF+BF=2OE,

证明:过点B作BH⊥OE于点H∴∠BHE=∠BHO=90°∵OE⊥MN,BF⊥MN

∴∠BFE=∠OEF=90°∴四边形EFBH为矩形∴BF=EH,EF=BH

∵四边形ABCD为正方形∴OA=OB,∠AOB=90°∴∠AOE+∠HOB=∠OBH+∠HOB=90°

∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH

∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.

②AF-BF=2OE,

证明:延长OE,过点B作BH⊥OE于点H

∴∠EHB=90°

∵OE⊥MN,BF⊥MN

∴∠AEO=∠HEF=∠BFE=90°

∴四边形HBFE为矩形∴BF=HE,EF=BH

∵四边形ABCD是正方形

∴OA=OB,∠AOB=90°∴∠AOE+∠BOH=∠OBH+∠BOH

∴∠AOE=∠OBH∴△AOE≌△OBH(AAS)

∴AE=OH,OE=BH∴AF-BF

=AE+EF-HE=OH-HE+OE=OE+OE=2OE

③BF-AF=2OE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=ax2+bxa≠0)经过A(6,0)、B(8,8)两点.

(1)求抛物线的解析式;

(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;

(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点POD分别与点NOB对应).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随机抽取某市一年(以365天计)中的30天的日平均气温状况统计如下:温度(

温度(

10

14

18

22

26

30

32

天数

3

5

5

7

6

2

2

请根据上述数据回答下列问题:

1)估计该城市年平均气温大约是多少?

2)上表中的温度数据的中位数是_______众数是_________

3)计算该城市一年中约有几天的日平均气温为?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,已知的三个顶点的坐标分别为,,.

1)将向上平移个单位长度,再向左平移个单位长度,得到,请画出(点,,的对应点分别为,,

2)请画出与关于轴对称的(点,,的对应点分别为

3)请写出,的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是以为斜边的直角三角形,是等边三角形.

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=20BC=15CD=7AD=24,∠B=90°

1)判断∠D是否是直角,并说明理由.

2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A.

(1)求点A的坐标;

(2)设x轴上一点P(a,b),过点Px轴的垂线(垂线位于点A的右侧),分别交的图像于点B、C,连接OC,若BC=OA,OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,等腰RtOAB中,∠AOB=90°,等腰RtEOF中,∠EOF=90°,连结AEBF

求证:(1AE=BF;(2AEBF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB两地相距60km,甲从A地去B地,乙从B地去A地,图中l1l2分别表示甲、乙两人离B地的距离ykm)与甲出发时间xh)的函数关系图象.

1)根据图象,直接写出乙的行驶速度;

2)解释交点A的实际意义;

3)甲出发多少时间,两人之间的距离恰好相距5km

4)若用y3km)表示甲乙两人之间的距离,请在坐标系中画出y3km)关于时间xh)的函数关系图象,注明关键点的数据.

查看答案和解析>>

同步练习册答案