【题目】A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中l1、l2分别表示甲、乙两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.
(1)根据图象,直接写出乙的行驶速度;
(2)解释交点A的实际意义;
(3)甲出发多少时间,两人之间的距离恰好相距5km;
(4)若用y3(km)表示甲乙两人之间的距离,请在坐标系中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.
【答案】(1)20km/h;(2)点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B地18km;(3)当甲出发1.3h或1.5h时,两人之间的距离恰好相距5km;(4)见解析.
【解析】
(1)(2)根据函数图象中的数据可以求乙的行驶速度,并求出点A的坐标,说出点A的实际意义;
(3)根据(1)中的函数解析式,可以列出相应的等式,从而可以求得甲出发多少时间,两人之间的距离恰好相距5km;
(4)根据函数图象中的数据可以求得y3(km)关于时间x(h)各段的函数解析式,从而可以画出相应的图象.
解:(1)由图象可得,
乙的行驶速度为:60÷(3.5-0.5)=20km/h.
(2)设l1对应的函数解析式为y1=k1x+b1,
得
即l1对应的函数解析式为y1=-30x+60,
设l2对应的函数解析式为y2=k2x+b2,
,得
即l2对应的函数解析式为y2=20x-10,
又
即点A的坐标为(1.4,18),
∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B地18km;
(3)由题意可得,
|(-30x+60)-(20x-10)|=5,
解得,x1=1.3,x2=1.5,
答:当甲出发1.3h或1.5h时,两人之间的距离恰好相距5km;
(4)由题意可得,
当0≤x≤0.5时,y3=-30x+60,
当0.5<x≤1.4时,y3=y1-y2=(-30x+60)-(20x-10)=-50x+70,
当1.4<x≤2时,y3=y2-y1=(20x-10)-(-30x+60)=50x-70,
当2<x≤3.5时,y3=20x-10,
y3(km)关于时间x(h)的函数关系图象如图2所示.
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边AB在直线MN上,O是AC、BD的交点,过O作OE⊥MN于点E.
(1)如图1,线段AB与OE之间的数量关系为 .(请直接填结论)
(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转(0<<90°),过点B作BF⊥MN于点F.
① 如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.
② 如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.
③ 当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为 .(请直接填结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰三角形中,,于点D.
(1)如图1,当∠C=3∠BAD,求∠C的度数.
(2)如图2,EF垂直平分AB,交于点F,连结DF,当时,求证:DF=DC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有一个△ABC,顶点,,.
(1)画出△ABC 关于 y 轴的对称图形(不写画法)
点A 关于 x 轴对称的点坐标为_____________;
点 B 关于 y 轴对称的点坐标为_____________;
点 C 关于原点对称的点坐标为_____________;
(2)若网格上的每个小正方形的边长为 1,求△ABC 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面角坐标系中,函数y=2x和y=-x的图像分别为直线l1、l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2020的坐标为_______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)若方程的两个根的平方和等于5,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三位数满足条件:其百位数字与十位数字之和为个位数字,则称这样的三位数为“吉祥数”,将“吉祥数”m的百位数字与个位数字交换位置,交换后所得的新数叫做m的“如意数”.如156是一个“吉祥数”,651是156的“如意数”.在吉祥数中当|x﹣y|=0或1时,称其为“和谐吉祥数”.
(1)个位数字为6的“和谐吉祥数”是 ,个位数字为9的“和谐吉祥数”是 .
(2)证明:任意一个“吉祥数”与其“如意数”之差都能被11整除;
(3)已知m为“吉祥数”,n是m的“如意数”,若m与n的和能被8整除,求m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与坐标轴分别交于点、和点,动点从原点开始沿方向以每秒个单位长度移动,动点从点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达原点时,点、停止运动.
直接写出抛物线的解析式:________;
求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?
当的面积最大时,在抛物线上是否存在点(点除外),使的面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com