精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.

【答案】30°

【解析】

根据矩形的性质可得OB=OCAD∥BC,∠ABC=BAD=90°,又由AE平分∠BAD∠AOD=120°,即可求得∠OBC∠AEB的度数,以及AB=BE AB=OA=OB,即可得OB=BE,∠BOE=BEO,即可求得∠OEB的度数

解:∵四边形ABCD是矩形,

ADBC,∠ABC=BAD=90°

AC=BDOB=0.5BDOC=0.5AC

OB=OC

∴∠OBC=OCB

∵∠BOC=AOD=120°

∴∠OBC=30°

AE平分∠BAD

∴∠BAE=EAD=45°

∴∠AEB=EAD=BAE=45°

AB=BE

∵∠AOD=120°

∴∠AOB=60°

AB=OA=OB

OB=BE

∴∠BOE=BEO

∴∠OEB=75°

∴∠AEO=OEB-AEB=75°-45°=30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1动手操作:

如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若ABE=20°,那么的度数为

2)观察发现:

小明将三角形纸片ABCABAC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到AEF(如图).小明认为AEF是等腰三角形,你同意吗?请说明理由.

3)实践与运用:

将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MNPQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图,MNF的大小。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6B是数轴上在A左侧的一点,且AB两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为tt0)秒.

1)数轴上点B表示的数是   ,点P表示的数是   (用含t的代数式表示);

2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点PQ同时出发.求:

①当点P运动多少秒时,点P与点Q相遇?

②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,AB=AC,G为三角形外一点,且△GBC为等边三角形.

(1)求证:直线AG垂直平分BC;

(2)以AB为一边作等边△ABE(如图2),连接EG、EC,试判断△EGC是否构成直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016江苏省无锡市)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.

(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;

(2)分别求该公司3月,4月的利润;

(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若规定这样一种运算:ab=(|ab|+a+b),例如:23=(|23|+2+3)=3

1)求34和(-3-2)的值;

2)将1,2,3,…,5050个自然数,任意分为25,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式(|ab|+a+b)中进行计算,求出其结果,25组数代入后可求得25个值,求这25个值的和的最大值是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.

(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=   

(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;

(3)如图3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之间距离是否有最大值?如有求出最大值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公园的门票价格规定如下表:

购票张数

1 50

51 100

101 150

150 张以上

每张票的价格

12

10

8

超过 150 张的部分 7

某校七年级(1)(2)两个班共 104 人,其中(1)班 40 多人,不足 50 人,经估算,如果两个班都以班为单位购票,则一共应付 1136 元,问:

(1)若两班联合起来作为一个团体购票,可省多少钱?

(2)两班学生各有多少人?

(3)若七年级(3)班有 n 人(46<n<55)与(1,2)班一起去游园,某商家赞助,支付三个班的所有门票费,则该商家最少花费 元(用含 n 的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形.请解答下列问题:

1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;

2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两边之和与其中一条对角线的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案